Multichannel compressed sensing MR image reconstruction using statistically optimized nonlinear diffusion

被引:7
作者
Joy, Ajin [1 ]
Paul, Joseph Suresh [1 ]
机构
[1] Indian Inst Informat Technol & Management Kerala, Med Image Comp & Signal Proc Lab, Trivandrum, Kerala, India
关键词
nonlinear diffusion; contrast parameter; total variation; compressed sensing; parallel MRI; ANISOTROPIC DIFFUSION; EDGE-DETECTION; REGULARIZATION; WAVELETS;
D O I
10.1002/mrm.26774
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeEliminate the need for parametric tuning in total variation (TV) based multichannel compressed-sensing image reconstruction using statistically optimized nonlinear diffusion without compromising image quality. Theory and MethodsNonlinear diffusion controls the denoising process using a contrast parameter that separates the gradients corresponding to noise and true edges in the image. This parameter is statistically estimated from the variance of combined image gradient to yield minimum steady-state reconstruction error. In addition, it uses acquired k-space data to bias the diffusion process toward an optimal solution. ResultsThe proposed method is compared with TV using a set of noisy spine and brain data sets for three, four, and five-fold undersampling. It is observed that the choice of regularization parameter (step size) of TV-based methods requires prior tuning based on an extensive search procedure. In contrast, statistical estimation of contrast parameter removes this need for tuning by adapting to the changes in data sets and undersampling levels. ConclusionsAlthough an a-priori tuned TV-based reconstruction can provide a comparable image quality to that of controlled nonlinear diffusion, there are practical limitations with regard to its time complexity for ad-hoc applications to multicoil compressed-sensing reconstruction. Magn Reson Med 78:754-762, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine
引用
收藏
页码:754 / 762
页数:9
相关论文
共 29 条
[1]  
[Anonymous], IEEE P 1 INT C IM PR
[2]  
Baker CA, 2011, I S BIOMED IMAGING, P1602, DOI 10.1109/ISBI.2011.5872709
[3]   Robust anisotropic diffusion [J].
Black, MJ ;
Sapiro, G ;
Marimont, DH ;
Heeger, D .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :421-432
[4]  
Block KT, 2008, P 16 ANN M ISMRM TOR
[5]   Total Generalized Variation [J].
Bredies, Kristian ;
Kunisch, Karl ;
Pock, Thomas .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03) :492-526
[6]   NONLINEAR ANISOTROPIC FILTERING OF MRI DATA [J].
GERIG, G ;
KUBLER, O ;
KIKINIS, R ;
JOLESZ, FA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) :221-232
[7]   A note on two classical enhancement filters and their associated PDE's [J].
Guichard, F ;
Morel, JM .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2003, 52 (2-3) :153-160
[8]   Improved image reconstruction of low-resolution multichannel phase contrast angiography [J].
Krishnan, Akshara P. ;
Joy, Ajin ;
Paul, Joseph Suresh .
JOURNAL OF MEDICAL IMAGING, 2016, 3 (01)
[9]   Noise-Driven Anisotropic Diffusion Filtering of MRI [J].
Krissian, Karl ;
Aja-Fernandez, Santiago .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (10) :2265-2274
[10]   Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform [J].
Lai, Zongying ;
Qu, Xiaobo ;
Liu, Yunsong ;
Guo, Di ;
Ye, Jing ;
Zhan, Zhifang ;
Chen, Zhong .
MEDICAL IMAGE ANALYSIS, 2016, 27 :93-104