Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping

被引:26
作者
Banks, H. T. [1 ]
Holm, Kathleen
Robbins, Danielle
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
基金
美国国家卫生研究院;
关键词
Parameter estimation; Bootstrapping; Asymptotic standard errors; LEAST-SQUARES; WEIGHTS;
D O I
10.1016/j.mcm.2010.06.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error, which produce non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1610 / 1625
页数:16
相关论文
共 31 条
  • [1] Anger G., 1990, Inverse problems in differential equations
  • [2] [Anonymous], 1977, NEW YORK
  • [3] [Anonymous], 2012, The Jackknife and Bootstrap
  • [4] [Anonymous], 1988, Transformation and weighting in regressionNew
  • [5] [Anonymous], 1998, INTRO BOOTSTRAP
  • [6] [Anonymous], 2002, COMPUTATIONAL METHOD
  • [7] [Anonymous], 1989, Estimation Techniques for Distributed Parameter Systems
  • [8] Banks HT, 2009, TEXTB MATH, P1
  • [9] Banks H. T., 2007, Journal of Inverse and ILL-Posed Problems, V15, P1, DOI 10.1515/JIIP.2007.001
  • [10] Banks H. T., 2007, Journal of Inverse and ILL-Posed Problems, V15, P683, DOI 10.1515/JIIP.2007.038