CLIFER: Continual Learning with Imagination for Facial Expression Recognition

被引:17
作者
Churamani, Nikhil [1 ]
Gunes, Hatice [1 ]
机构
[1] Univ Cambridge, Dept Comp Sci & Technol, Cambridge, England
来源
2020 15TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2020) | 2020年
基金
英国工程与自然科学研究理事会;
关键词
FACE; DATABASE;
D O I
10.1109/FG47880.2020.00110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current Facial Expression Recognition (FER) approaches tend to be insensitive to individual differences in expression and interaction contexts. They are unable to adapt to the dynamics of real-world environments where data is only available incrementally, acquired by the system during interactions. In this paper, we propose a novel continual learning framework with imagination for FER (CLIFER) that (i) implements imagination to simulate expression data for particular subjects and integrates it with (ii) a complementary learning-based dual-memory (episodic and semantic) model, to augment person-specific learning. The framework is evaluated on its ability to remember previously seen classes as well as on generalising to yet unseen classes, resulting in high F1-scores for multiple FER datasets: RAVDESS (episodic: F1= 0.98 +/- 0.01, semantic: F1= 0.75 +/- 0.01), MMI (episodic: F1= 0.75 +/- 0.07, semantic: F1= 0.46 +/- 0.04) and BAUM-1 (episodic: F1= 0.87 +/- 0.05, semantic: F1= 0.51 +/- 0.04).
引用
收藏
页码:322 / 328
页数:7
相关论文
共 37 条
[1]   Using Synthetic Data to Improve Facial Expression Analysis with 3D Convolutional Networks [J].
Abbasnejad, Iman ;
Sridharan, Sridha ;
Dung Nguyen ;
Denman, Simon ;
Fookes, Clinton ;
Lucey, Simon .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :1609-1618
[2]  
[Anonymous], 2018, CoRR abs/1804.08348
[3]  
Barros P., 2019, INT C MACHINE LEARNI, P485
[4]   FACE RECOGNITION - FEATURES VERSUS TEMPLATES [J].
BRUNELLI, R ;
POGGIO, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :1042-1052
[5]   Selective Transfer Machine for Personalized Facial Expression Analysis [J].
Chu, Wen-Sheng ;
De la Torre, Fernando ;
Cohn, Jeffrey F. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (03) :529-545
[6]   Can Imagined Interactions Produce Positive Perceptions? Reducing Prejudice Through Simulated Social Contact [J].
Crisp, Richard J. ;
Turner, Rhiannon N. .
AMERICAN PSYCHOLOGIST, 2009, 64 (04) :231-240
[7]  
Ding H, 2018, AAAI CONF ARTIF INTE, P6781
[8]   CONSTANTS ACROSS CULTURES IN FACE AND EMOTION [J].
EKMAN, P ;
FRIESEN, WV .
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1971, 17 (02) :124-&
[9]   Curriculum Learning for Facial Expression Recognition [J].
Gui, Liangke ;
Baltrusaitis, Tadas ;
Morency, Louis-Philippe .
2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, :505-511
[10]   Dominant and Complementary Emotion Recognition From Still Images of Faces [J].
Guo, Jianzhu ;
Lei, Zhen ;
Wan, Jun ;
Avots, Egils ;
Hajarolasvadi, Noushin ;
Knyazev, Boris ;
Kuharenko, Artem ;
Silveira Jacques Junior, Julio C. ;
Baro, Xavier ;
Demirel, Hasan ;
Escalera, Sergio ;
Allik, Jueri ;
Anbarjafari, Gholamreza .
IEEE ACCESS, 2018, 6 :26391-26403