New limited memory bundle method for large-scale nonsmooth optimization

被引:86
作者
Haarala, M
Miettinen, K
Mäkelä, MM
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, FIN-40014 Jyvaskyla, Finland
[2] Helsinki Sch Econ, FIN-00101 Helsinki, Finland
关键词
nondifferentiable programming; large-scale optimization; bundle methods; variable metric methods; limited memory methods; test problems;
D O I
10.1080/10556780410001689225
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables. In such problems, the direct application of smooth gradient-based methods may lead to a failure due to the nonsmooth nature of the problem. On the other hand, none of the current general nonsmooth optimization methods is efficient in large-scale settings. In this article, we describe a new limited memory variable metric based bundle method for nonsmooth large-scale optimization. In addition, we introduce a new set of academic test problems for large-scale nonsmooth minimization. Finally, we give some encouraging results from numerical experiments using both academic and practical test problems.
引用
收藏
页码:673 / 692
页数:20
相关论文
共 28 条
[1]   REPRESENTATIONS OF QUASI-NEWTON MATRICES AND THEIR USE IN LIMITED MEMORY METHODS [J].
BYRD, RH ;
NOCEDAL, J ;
SCHNABEL, RB .
MATHEMATICAL PROGRAMMING, 1994, 63 (02) :129-156
[2]   EFFICIENT METHOD TO SOLVE MINIMAX PROBLEM DIRECTLY [J].
CHARALAMBOUS, C ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :162-187
[3]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[4]  
CONN AR, 1988, MATH COMPUT, V50, P399, DOI 10.1090/S0025-5718-1988-0929544-3
[5]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[6]  
Fletcher R., 1981, PRACTICAL METHODS OP
[7]   PARTITIONED VARIABLE-METRIC UPDATES FOR LARGE STRUCTURED OPTIMIZATION PROBLEMS [J].
GRIEWANK, A ;
TOINT, PL .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :119-137
[8]  
Grothey, 2001, THESIS U EDINBURGH
[9]  
Gupta N., 1985, DISSERTATION
[10]  
Hiriart-Urruty J. B., 1993, CONVEX ANAL MINIMIZA