Maximal averages over surfaces

被引:48
作者
Iosevich, A [1 ]
Sawyer, E
机构
[1] Wright State Univ, Dayton, OH 45435 USA
[2] McMaster Univ, Hamilton, ON L8S 4L8, Canada
[3] IUPUI, Indianapolis, IN USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1006/aima.1997.1678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Mf(x) = sup(t>0)\f*delta(t)(psi d sigma)(x)\ denote the maximal operator associated with surface measure d sigma on a smooth surface S. We prove that if S is convex and has finite order contact with its tangent lines, then M is bounded on L-p(R-n), p > 2, if and only if d(x, H)(-1) is an element of L-loc(1/p)(S) for all tangent planes H not passing through the origin. Let M'f(x) = sup(t>0)\f*delta(t)'(psi d sigma)(x)\ be the maximal operator associated with a nonisotropic dilation delta(t)' of surface measure d sigma. We prove that M' often behaves far better than M due to a rotational curvature in the time parameter t. (C) 1997 Academic Press.
引用
收藏
页码:46 / 119
页数:74
相关论文
共 24 条
[1]  
[Anonymous], HARMONIC ANAL
[2]   AVERAGES IN THE PLANE OVER CONVEX CURVES AND MAXIMAL OPERATORS [J].
BOURGAIN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :69-85
[3]   CONVEX HYPERSURFACES AND FOURIER-TRANSFORMS [J].
BRUNA, J ;
NAGEL, A ;
WAINGER, S .
ANNALS OF MATHEMATICS, 1988, 127 (02) :333-365
[4]   INEQUALITIES FOR SOME MAXIMAL FUNCTIONS .2. [J].
COWLING, M ;
MAUCERI, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (01) :341-365
[5]   OSCILLATORY INTEGRALS AND FOURIER-TRANSFORMS OF SURFACE CARRIED MEASURES [J].
COWLING, M ;
MAUCERI, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (01) :53-68
[6]  
DEGUZMAN M, THESIS
[7]   SINGULAR INTEGRALS WITH MIXED HOMOGENEITY [J].
FABES, EB ;
RIVIERE, NM .
STUDIA MATHEMATICA, 1966, 27 (01) :19-&
[8]   PRINCIPAL CURVATURE AND HARMONIC-ANALYSIS [J].
GREENLEAF, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :519-537
[9]   REGULARITY ESTIMATES FOR THE OBLIQUE DERIVATIVE PROBLEM [J].
GUAN, PF ;
SAWYER, E .
ANNALS OF MATHEMATICS, 1993, 137 (01) :1-70
[10]   Oscillatory integrals and maximal averages over homogeneous surfaces [J].
Iosevich, A ;
Sawyer, E .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (01) :103-141