Determining time resolution of microchannel plate detectors for electron time-of-flight spectrometers

被引:6
作者
Zhang, Qi [1 ]
Zhao, Kun [1 ]
Chang, Zenghu [2 ,3 ]
机构
[1] Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[3] Univ Cent Florida, CREOL, Orlando, FL 32816 USA
关键词
TEMPORAL RESOLUTION; SINGLE PHOTONS; MCP-PMT; PHOTOMULTIPLIERS; PERFORMANCE; SYSTEM; PULSES;
D O I
10.1063/1.3463690
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The temporal resolution of a 40 mm diameter chevron microchannel plate (MCP) detector followed by a constant fraction discriminator and a time-to-digital converter was determined by using the third order harmonic of 25 fs Ti:sapphire laser pulses. The resolution was found to deteriorate from 200 to 300 ps as the total voltage applied on the two MCPs increased from 1600 to 2000 V. This was likely due to a partial saturation of the MCP and/or the constant fraction discriminator working with signals beyond its optimum range of pulse width and shape. (C) 2010 American Institute of Physics. [doi:10.1063/1.3463690]
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Behaviour in high magnetic fields of fine-mesh photodetectors for fast time-of-flight detectors
    Bonesini, M.
    Strati, F.
    Baccaglioni, G.
    Broggi, F.
    Volpini, G.
    Cecchet, G.
    DeBari, A.
    Nardo, R.
    Rossella, M.
    Dussoni, S.
    Gatti, F.
    Valle, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 567 (01) : 200 - 204
  • [22] A Ring Neutron Detector for a Time-of-flight Diffractometer Based on Linear Scintillation Detectors with Silicon Photomultipliers
    Marin, V. N.
    Sadykov, R. A.
    Trunov, D. N.
    Litvin, V. S.
    Axenov, S. N.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2018, 61 (01) : 1 - 8
  • [23] Ion spectrometer composed of time-of-flight and Thomson parabola spectrometers for simultaneous characterization of laser-driven ions
    Choi, I. W.
    Kim, C. M.
    Sung, J. H.
    Yu, T. J.
    Lee, S. K.
    Kim, I. J.
    Jin, Y. -Y.
    Jeong, T. M.
    Hafz, N.
    Pae, K. H.
    Noh, Y. -C.
    Ko, D. -K.
    Yogo, A.
    Pirozhkov, A. S.
    Ogura, K.
    Orimo, S.
    Sagisaka, A.
    Nishiuchi, M.
    Daito, I.
    Oishi, Y.
    Iwashita, Y.
    Nakamura, S.
    Nemoto, K.
    Noda, A.
    Daido, H.
    Lee, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (05)
  • [24] Improved Intrinsic Motion Detection Using Time-of-Flight PET
    Xu, Jingyan
    Tsui, Benjamin M. W.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 2131 - 2145
  • [25] Fourier rebinning and consistency equations for time-of-flight PET planograms
    Li, Yusheng
    Defrise, Michel
    Matej, Samuel
    Metzler, Scott D.
    INVERSE PROBLEMS, 2016, 32 (09)
  • [26] High-resolution time-of-flight PET detector with 100 ps coincidence time resolution using a side-coupled phoswich configuration
    Lee, Min Sun
    Cates, Joshua W.
    Gonzalez-Montoro, Andrea
    Levin, Craig S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (12)
  • [27] Characterisation of silicon photomultipliers for time-of-flight PET
    Ahmed, M.
    Camanzi, B.
    Matheson, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 695 : 252 - 256
  • [28] Segmented SiPM Readout for Cherenkov Time-of-Flight Positron Emission Tomography Detectors Based on Bismuth Germanate
    Yi, Minseok
    Lee, Daehee
    Gola, Alberto
    Merzi, Stefano
    Penna, Michele
    Lee, Jae Sung
    Cherry, Simon R.
    Kwon, Sun Il
    ACS PHOTONICS, 2025, 12 (02): : 1125 - 1136
  • [29] Diagnostic system for time-of-flight neutron measurements
    Tomaszewski, Krzysztof J.
    Plasma and Fusion Science, 2006, 875 : 41 - 44
  • [30] Axial Fourier Rebinning for Time-of-Flight PET
    Li, Yusheng
    Matej, Samuel
    Metzler, Scott D.
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,