Diffusional Kurtosis Imaging in the Diffusion Imaging in Python']Python Project

被引:31
作者
Henriques, Rafael Neto [1 ]
Correia, Marta M. [2 ]
Marrale, Maurizio [3 ,4 ]
Huber, Elizabeth [5 ]
Kruper, John [6 ]
Koudoro, Serge [7 ]
Yeatman, Jason D. [5 ,8 ]
Garyfallidis, Eleftherios [7 ]
Rokem, Ariel [6 ]
机构
[1] Champalimaud Ctr, Champalimaud Res, Lisbon, Portugal
[2] Univ Cambridge, Cognit & Brain Sci Unit, Cambridge, England
[3] Univ Palermo, Dept Phys & Chem Emilio Segre, Palermo, Italy
[4] Natl Inst Nucl Phys INFN, Catania Div, Catania, Italy
[5] Univ Washington, Inst Learning & Brain Sci, Dept Speech & Hearing, Seattle, WA 98195 USA
[6] Univ Washington, Dept Psychol & eSci Inst, Seattle, WA 98195 USA
[7] Indiana Univ, Dept Intelligent Syst Engn, Luddy Sch Informat Comp Sci & Engn, Bloomington, IN 47401 USA
[8] Stanford Univ, Dept Pediat, Grad Sch Educ, Stanford, CA 94305 USA
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2021年 / 15卷
关键词
MRI; diffusion MRI; DKI; DTI; microstructure; open-source software; biophysics; !text type='python']python[!/text; GAUSSIAN WATER DIFFUSION; HUMAN BRAIN; TENSOR; MRI; ORIENTATION; DENSITY; ANISOTROPY; INTEGRITY; METRICS; MODEL;
D O I
10.3389/fnhum.2021.675433
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion-weighted magnetic resonance imaging (dMRI) measurements and models provide information about brain connectivity and are sensitive to the physical properties of tissue microstructure. Diffusional Kurtosis Imaging (DKI) quantifies the degree of non-Gaussian diffusion in biological tissue from dMRI. These estimates are of interest because they were shown to be more sensitive to microstructural alterations in health and diseases than measures based on the total anisotropy of diffusion which are highly confounded by tissue dispersion and fiber crossings. In this work, we implemented DKI in the Diffusion in Python (DIPY) project-a large collaborative open-source project which aims to provide well-tested, well-documented and comprehensive implementation of different dMRI techniques. We demonstrate the functionality of our methods in numerical simulations with known ground truth parameters and in openly available datasets. A particular strength of our DKI implementations is that it pursues several extensions of the model that connect it explicitly with microstructural models and the reconstruction of 3D white matter fiber bundles (tractography). For instance, our implementations include DKI-based microstructural models that allow the estimation of biophysical parameters, such as axonal water fraction. Moreover, we illustrate how DKI provides more general characterization of non-Gaussian diffusion compatible with complex white matter fiber architectures and gray matter, and we include a novel mean kurtosis index that is invariant to the confounding effects due to tissue dispersion. In summary, DKI in DIPY provides a well-tested, well-documented and comprehensive reference implementation for DKI. It provides a platform for wider use of DKI in research on brain disorders and in cognitive neuroscience.
引用
收藏
页数:22
相关论文
共 123 条
  • [1] Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline
    Ades-Aron, Benjamin
    Veraart, Jelle
    Kochunov, Peter
    McGuire, Stephen
    Sherman, Paul
    Kellner, Elias
    Novikov, Dmitry S.
    Fieremans, Els
    [J]. NEUROIMAGE, 2018, 183 : 532 - 543
  • [2] An open resource for transdiagnostic research in pediatric mental health and learning disorders
    Alexander, Lindsay M.
    Escalera, Jasmine
    Ai, Lei
    Andreotti, Charissa
    Febre, Karina
    Mangone, Alexander
    Vega-Potler, Natan
    Langer, Nicolas
    Alexander, Alexis
    Kovacs, Meagan
    Litke, Shannon
    O'Hagan, Bridget
    Andersen, Jennifer
    Bronstein, Batya
    Bui, Anastasia
    Bushey, Marijayne
    Butler, Henry
    Castagna, Victoria
    Camacho, Nicolas
    Chan, Elisha
    Citera, Danielle
    Clucas, Jon
    Cohen, Samantha
    Dufek, Sarah
    Eaves, Megan
    Fradera, Brian
    Gardner, Judith
    Grant-Villegas, Natalie
    Green, Gabriella
    Gregory, Camille
    Hart, Emily
    Harris, Shana
    Horton, Megan
    Kahn, Danielle
    Kabotyanski, Katherine
    Karmel, Bernard
    Kelly, Simon P.
    Kleinman, Kayla
    Koo, Bonhwang
    Kramer, Eliza
    Lennon, Elizabeth
    Lord, Catherine
    Mantello, Ginny
    Margolis, Amy
    Merikangas, Kathleen R.
    Milham, Judith
    Minniti, Giuseppe
    Neuhaus, Rebecca
    Levine, Alexandra
    Osman, Yael
    [J]. SCIENTIFIC DATA, 2017, 4
  • [3] Disentangling white-matter damage from physiological fibre orientation dispersion in multiple sclerosis
    Andersen, Kasper Winther
    Lasic, Samo
    Lundell, Henrik
    Nilsson, Markus
    Topgaard, Daniel
    Sellebjerg, Finn
    Szczepankiewicz, Filip
    Siebner, Hartwig Roman
    Blinkenberg, Morten
    Dyrby, Tim B.
    [J]. BRAIN COMMUNICATIONS, 2020, 2 (02)
  • [4] Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain
    Assaf, Y
    Basser, PJ
    [J]. NEUROIMAGE, 2005, 27 (01) : 48 - 58
  • [5] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [6] Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
  • [7] Cython: The Best of Both Worlds
    Behnel, Stefan
    Bradshaw, Robert
    Citro, Craig
    Dalcin, Lisandro
    Seljebotn, Dag Sverre
    Smith, Kurt
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2011, 13 (02) : 31 - 39
  • [8] White matter tract integrity metrics reflect the vulnerability of late-myelinating tracts in Alzheimer's disease
    Benitez, Andreana
    Fieremans, Els
    Jensen, Jens H.
    Falangola, Maria F.
    Tabesh, Ali
    Ferris, Steven H.
    Helpern, Joseph A.
    [J]. NEUROIMAGE-CLINICAL, 2014, 4 : 64 - 71
  • [9] Brett M., 2020, **DATA OBJECT**, DOI [10.5281/zenodo.4295521, DOI 10.5281/ZENODO.4295521]
  • [10] DIFFRACTION-LIKE EFFECTS IN NMR DIFFUSION STUDIES OF FLUIDS IN POROUS SOLIDS
    CALLAGHAN, PT
    COY, A
    MACGOWAN, D
    PACKER, KJ
    ZELAYA, FO
    [J]. NATURE, 1991, 351 (6326) : 467 - 469