Real-time sign language framework based on wearable device: analysis of MSL, DataGlove, and gesture recognition

被引:24
作者
Ahmed, M. A. [2 ]
Zaidan, B. B. [1 ]
Zaidan, A. A. [1 ]
Alamoodi, A. H. [1 ]
Albahri, O. S. [1 ]
Al-Qaysi, Z. T. [2 ]
Albahri, A. S. [3 ]
Salih, Mahmood M. [2 ]
机构
[1] Univ Pendidikan Sultan Idris UPSI, Dept Comp, Fac Arts Comp & Creat Ind, Tanjong Malim, Perak, Malaysia
[2] Tikrit Univ, Dept Comp Sci, Comp Sci & Math Coll, Tikrit, Iraq
[3] Iraqi Commiss Comp & Informat ICCI, Informat Inst Postgrad Studies IIPS, Baghdad, Iraq
关键词
Sign language; Gesture recognition; MSL; Data glove; Sensor; Malaysian sign language; WORD RECOGNITION; SENSORY GLOVE;
D O I
10.1007/s00500-021-05855-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Researchers have been inspired to use technology to enable people with hearing and speech impairment to communicate and engage with others around them. Sensory approach to recognition facilitates real-time and accurate recognition of signs. Thus, this study proposes a Malaysian Sign Language (MSL) recognition framework. The framework consists of three sub-modules for the recognition of static isolated signs based on data collected from a DataGlove. The first module focuses on the characteristics of signs, yielding sign recognition system requirements. The second module describes the different steps required to develop a wearable sign-capture device. The third module discusses the real-time SL recognition approach, which uses a template-matching algorithm to recognize acquired data. The final design of the DataGlove with 65 data channel fulfils the requirement identified from an analysis of MSL. The DataGlove is able to record data for all of the signs (both dynamic and static) of MSL due to the wide range of captured hand features. As a result, the recognition engine can accurately recognize complex signs.
引用
收藏
页码:11101 / 11122
页数:22
相关论文
共 65 条
[1]  
Aarthi M, 2016, INT CONF RECENT
[2]  
Abdulateef SK., 2020, INDONES J ELECT ENG, V20, P132, DOI [10.11591/ijeecs.v20.i1.pp132-137, DOI 10.11591/IJEECS.V20.I1.PP132-137]
[3]  
Abhishek KS, 2016, IEEE C ELEC DEVICES, P334, DOI 10.1109/EDSSC.2016.7785276
[4]  
Abualola H., 2016, P 2016 IEEE 59 INT M, P1
[5]   Measurement of the Flexible Bending Force of the Index and Middle Fingers for Virtual Interaction [J].
Adnan, Nazrul H. ;
Wan, Khairunizam ;
Shahriman, A. B. ;
Zaaba, S. K. ;
Shafriza Nisha, Basaha ;
Razlan, Zuradzman M. ;
Hazry, D. ;
Ayob, M. Nasir ;
Nor, Rudzuan M. ;
Aziz, Azri A. .
INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS 2012 (IRIS 2012), 2012, 41 :388-394
[6]  
Aguiar S, 2016, 2016 IEEE ECUADOR TECHNICAL CHAPTERS MEETING (ETCM)
[7]  
Ahmad MA., 2016, TIKRIT J PURE SCI, V21, P167
[8]   Based on wearable sensory device in 3D-printed humanoid: A new real-time sign language recognition system [J].
Ahmed, M. A. ;
Zaidan, B. B. ;
Zaidan, A. A. ;
Salih, Mahmood M. ;
Al-qaysi, Z. T. ;
Alamoodi, A. H. .
MEASUREMENT, 2021, 168
[9]   A Review on Systems-Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017 [J].
Ahmed, Mohamed Aktham ;
Zaidan, Bilal Bahaa ;
Zaidan, Aws Alaa ;
Salih, Mahmood Maher ;
Bin Lakulu, Muhammad Modi .
SENSORS, 2018, 18 (07)
[10]  
Ahmed S. F., 2010, 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT 2010), P56, DOI 10.1109/STUDENT.2010.5687009