High breakdown mixture discriminant analysis

被引:26
作者
Bashir, S [1 ]
Carter, EM [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
关键词
mixture models; EM algorithm; S-estimators; breakdown point;
D O I
10.1016/j.jmva.2003.12.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Robust S-estimation is proposed for multivariate Gaussian mixture models generalizing the work of Hastie and Tibshirani (J. Roy. Statist. Soc. Ser. B 58 (1996) 155). In the case of Gaussian Mixture models, the unknown location and scale parameters are estimated by the EM algorithm. In the presence of outliers, the maximum likelihood estimators of the unknown parameters are affected, resulting in the misclassification of the observations. The robust S-estimators of the unknown parameters replace the non-robust estimators from M-step of the EM algorithm. The results were compared with the standard mixture discriminant analysis approach using the probability of misclassification criterion. This comparison showed a slight reduction in the average probability of misclassification using robust S-estimators as compared to the standard maximum likelihood estimators. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1987, ROBUST REGRESSION OU
[2]   Robust linear discriminant analysis using S-estimators [J].
Croux, C ;
Dehon, C .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (03) :473-493
[3]  
DEMPSTER A., 1997, J ROYAL STAT SOC B, V39, P1
[4]  
Hastie T, 1996, J ROY STAT SOC B, V58, P155
[5]  
HASTIE T, 1994, DISCRIMINANAT ANAL G
[6]  
Hawkins D.M, 1980, IDENTIFICATION OUTLI, V11, DOI [10.1007/978-94-015-3994-4, DOI 10.1007/978-94-015-3994-4]
[7]   High breakdown estimation for multiple populations with applications to discriminant analysis [J].
He, XM ;
Fung, WK .
JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 72 (02) :151-162
[8]  
Huber P. J., 1981, ROBUST STAT
[10]   ROBUST M-ESTIMATORS OF MULTIVARIATE LOCATION AND SCATTER [J].
MARONNA, RA .
ANNALS OF STATISTICS, 1976, 4 (01) :51-67