Prediction intervals for integrals of Gaussian random fields

被引:6
作者
De Oliveira, Victor [1 ]
Kone, Bazoumana [1 ,2 ]
机构
[1] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX 78249 USA
[2] PPD, Austin, TX 78744 USA
基金
美国国家卫生研究院;
关键词
Block average; Bootstrap calibration; Change of support problem; Geostatistics; Kriging; Spatial average; COVARIANCE; LIMITS;
D O I
10.1016/j.csda.2014.09.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Methodology is proposed for the construction of prediction intervals for integrals of Gaussian random fields over bounded regions (called block averages in the geostatistical literature) based on observations at a finite set of sampling locations. Two bootstrap calibration algorithms are proposed, termed indirect and direct, aimed at improving upon plug-in prediction intervals in terms of coverage probability. A simulation study is carried out that illustrates the effectiveness of both procedures, and these procedures are applied to estimate block averages of chromium traces in a potentially contaminated region in Switzerland. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 50 条
  • [21] On Information About Covariance Parameters in Gaussian Matern Random Fields
    De Oliveira, Victor
    Han, Zifei
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (04) : 690 - 712
  • [22] Conditional Latin Hypercube Simulation of (Log)Gaussian Random Fields
    Liodakis, Stelios
    Kyriakidis, Phaedon
    Gaganis, Petros
    MATHEMATICAL GEOSCIENCES, 2018, 50 (02) : 127 - 146
  • [23] Conditional Latin Hypercube Simulation of (Log)Gaussian Random Fields
    Stelios Liodakis
    Phaedon Kyriakidis
    Petros Gaganis
    Mathematical Geosciences, 2018, 50 : 127 - 146
  • [24] On Information About Covariance Parameters in Gaussian Matérn Random Fields
    Victor De Oliveira
    Zifei Han
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 690 - 712
  • [25] Simulation of conditional non-Gaussian random fields with directional asymmetry
    Horning, Sebastian
    Bardossy, Andras
    SPATIAL STATISTICS, 2025, 65
  • [26] Fast and exact synthesis of some operator scaling Gaussian random fields
    Bierme, Hermine
    Lacaux, Celine
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 293 - 320
  • [27] Scalable Inference of Sparsely-changing Gaussian Markov Random Fields
    Fattahi, Salar
    Gomez, Andres
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [28] Identifiability problems in some non-Gaussian spatial random fields
    Genton, Marc G.
    Zhang, Hao
    CHILEAN JOURNAL OF STATISTICS, 2012, 3 (02): : 171 - 179
  • [29] On the consistency of inversion-free parameter estimation for Gaussian random fields
    Keshavarz, Hossein
    Scott, Clayton
    XuanLong Nguyen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 150 : 245 - 266
  • [30] Gaussian likelihood inference on data from trans-Gaussian random fields with Matern covariance function
    Yan, Yuan
    Genton, Marc G.
    ENVIRONMETRICS, 2018, 29 (5-6)