Universal width distributions in non-Markovian Gaussian processes

被引:12
|
作者
Santachiara, Raoul
Rosso, Alberto
Krauth, Werner
机构
[1] CNRS-Laboratoire de Physique Théorique, Université Louis Pasteur, F-67084 Strasbourg Cedex
[2] CNRS-Laboratoire de Physique Théorique, Ecole Normale Supérieure, F-75231 Paris Cedex 05
[3] CNRS-Laboratoire de Physique Théorique et Modèles Statistiques, Bâtiment 100, Université Paris-Sud
[4] CNRS-Laboratoire de Physique Statistique, Ecole Normale Supérieure, F-75231 Paris Cedex 05
关键词
self-affine roughness ( theory); Brownian motion; stochastic processes theory);
D O I
10.1088/1742-5468/2007/02/P02009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the influence of boundary conditions on self-affine random functions u(t) in the interval , with independent Gaussian Fourier modes q of variance ∼1/qα. We consider the probability distribution of the mean square width of u(t) taken over the whole interval or in a window . Its characteristic function can be expressed in terms of the spectrum of an infinite matrix. This distribution strongly depends on the boundary conditions of u(t) for finite δ, but we show that it is universal (independent of boundary conditions) in the small-window limit (, ). We compute it directly for arbitrary α>1, using, for α<3, an asymptotic expansion formula that we derive. For α>3, the limiting width distribution is independent of α. It corresponds to an infinite matrix with a single non-zero eigenvalue. We give the exact expression for the width distribution in this case. Our calculation allows us to extract the roughness exponent from the width distribution of experimental data even in cases where the standard extrapolation method cannot be used. © IOP Publishing Ltd.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Quantum Metrology for Non-Markovian Processes
    Altherr, Anian
    Yang, Yuxiang
    PHYSICAL REVIEW LETTERS, 2021, 127 (06)
  • [22] Dynamics of non-Markovian exclusion processes
    Khoromskaia, Diana
    Harris, Rosemary J.
    Grosskinsky, Stefan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [23] Non-Markovian processes on heteroclinic networks
    Manicom, Gray
    Kirk, Vivien
    Postlethwaite, Claire
    CHAOS, 2024, 34 (03)
  • [24] On positively divisible non-Markovian processes
    Canturk, Bilal
    Breuer, Heinz-Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (26)
  • [25] Probing rough surfaces: Markovian versus non-Markovian processes
    Fazeli, S. M.
    Shirazi, A. H.
    Jafari, G. R.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [26] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Jing Nie
    Yingshuang Liang
    Biao Wang
    Xiuyi Yang
    International Journal of Theoretical Physics, 2021, 60 : 2889 - 2900
  • [27] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900
  • [28] Symmetries of general non-Markovian Gaussian diffusive unravelings
    Budini, Adrian A.
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [29] Non-Markovian Gaussian dissipative stochastic wave vector
    Budini, AA
    PHYSICAL REVIEW A, 2001, 63 (01):
  • [30] Passive tracer in non-Markovian, Gaussian velocity field
    Chojecki, Tymoteusz
    STATISTICS & PROBABILITY LETTERS, 2019, 145 : 21 - 27