Universal width distributions in non-Markovian Gaussian processes

被引:12
|
作者
Santachiara, Raoul
Rosso, Alberto
Krauth, Werner
机构
[1] CNRS-Laboratoire de Physique Théorique, Université Louis Pasteur, F-67084 Strasbourg Cedex
[2] CNRS-Laboratoire de Physique Théorique, Ecole Normale Supérieure, F-75231 Paris Cedex 05
[3] CNRS-Laboratoire de Physique Théorique et Modèles Statistiques, Bâtiment 100, Université Paris-Sud
[4] CNRS-Laboratoire de Physique Statistique, Ecole Normale Supérieure, F-75231 Paris Cedex 05
关键词
self-affine roughness ( theory); Brownian motion; stochastic processes theory);
D O I
10.1088/1742-5468/2007/02/P02009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the influence of boundary conditions on self-affine random functions u(t) in the interval , with independent Gaussian Fourier modes q of variance ∼1/qα. We consider the probability distribution of the mean square width of u(t) taken over the whole interval or in a window . Its characteristic function can be expressed in terms of the spectrum of an infinite matrix. This distribution strongly depends on the boundary conditions of u(t) for finite δ, but we show that it is universal (independent of boundary conditions) in the small-window limit (, ). We compute it directly for arbitrary α>1, using, for α<3, an asymptotic expansion formula that we derive. For α>3, the limiting width distribution is independent of α. It corresponds to an infinite matrix with a single non-zero eigenvalue. We give the exact expression for the width distribution in this case. Our calculation allows us to extract the roughness exponent from the width distribution of experimental data even in cases where the standard extrapolation method cannot be used. © IOP Publishing Ltd.
引用
收藏
页数:22
相关论文
共 50 条