Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries

被引:37
作者
Nam, Ki-Hun [1 ,2 ]
Chae, Keun Hwa [3 ]
Choi, Jeong-Hee [4 ]
Jeon, Ki-Joon [5 ,6 ]
Park, Cheol-Min [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[2] Kumoh Natl Inst Technol, Dept Energy Engn Convergence, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[3] Korea Inst Sci & Technol KIST, Adv Anal Ctr, 14 Gil 5 Hwarang Ro, Seoul 02792, South Korea
[4] Korea Electrotechnol Res Inst, Next Generat Battery Res Ctr, 12 Jeongiui Gil, Chang Won 51543, Gyeongnam, South Korea
[5] Inha Univ, Dept Environm Engn, 100 Inha Ro, Incheon 22212, South Korea
[6] Inha Univ, Program Environm & Polymer Engn, 100 Inha Ro, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
Carbon black; Amorphization; Pre-lithiation/sodiation; Li-ion batteries; Na-ion batteries; LITHIUM; PRELITHIATION; INSERTION; NANOPARTICLES; MECHANISMS; EFFICIENT; CAPACITY; OXIDE;
D O I
10.1016/j.cej.2021.129242
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon black (CB) is an inexpensive and widely used carbonaceous material. However, the reversibility between CB and Li or Na is very poor, and the initial coulombic efficiency (ICE) is so low that it cannot be used as an electrode material for rechargeable batteries. In this study, we successfully designed superior CB as a high-performance conducting additive for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) using a simple two-step strategy: amorphization and pre-lithiation/sodiation. The Li- and Na-reversible capacities of amorphized CB increased significantly from 213 to 564 mAh g(-1) for LIB and from 92 to 209 mAh g(-1) for NIB; however, the corresponding ICEs of 61.5% for LIB and 33.5% for NIB are poor. The poor ICEs are supplemented via prelithiation/sodiation in the amorphized CB, which show over 100% ICEs with high Li- and Na-reversible capacities. Specifically, the modified CB has highly reversible capacities (>500 mAh g(-1) for LIB, >300 mAh g(-1) for NIB) with exceptionally high ICEs (133% ICE for LIB, 160% ICE for NIB), stable reversible capacities for over 100 cycles (470 mAh g(-1) for LIB, 278 mAh g(-1) for NIB), fast rate capabilities with highly reversible capacities at a 3C rate (similar to 330 mAh g(-1) for LIB, similar to 190 mAh g(-1) for NIB), and excellent cycling behavior for over 300 cycles at a 1C rate. When used as a conducting additive, this CB contributes to high electrical conductivity and increase of ICE and the reversible capacity for LIB and NIB anode materials. These results are expected to have a significant impact on LIBs and NIBs.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[3]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[4]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[5]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[6]   The role of carbon black distribution in cathodes for Li ion batteries [J].
Dominko, R ;
Gaberscek, M ;
Drofenik, J ;
Bele, M ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF POWER SOURCES, 2003, 119 :770-773
[7]  
Donnet J.B., 1993, Carbon Black: Science and Technology, VSecond
[8]  
Enoki T., 2003, GRAPHITE INTERCALATI
[9]   SnLi4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries [J].
Fan, Xiulin ;
Shao, Jie ;
Xiao, Xuezhang ;
Wang, Xinhua ;
Li, Shouquan ;
Ge, Hongwei ;
Chen, Lixin .
NANO ENERGY, 2014, 9 :196-203
[10]   Prelithiation of Silicon-Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP) [J].
Forney, Michael W. ;
Ganter, Matthew J. ;
Staub, Jason W. ;
Ridgley, Richard D. ;
Landi, Brian J. .
NANO LETTERS, 2013, 13 (09) :4158-4163