Residual properties of groups defined by basic commutators

被引:1
作者
Baumslag, Gilbert [1 ,2 ]
Mikhailov, Roman [3 ,4 ]
机构
[1] CUNY City Coll, CAISS, New York, NY 10031 USA
[2] CUNY City Coll, Dept Comp Sci, New York, NY 10031 USA
[3] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199178, Russia
[4] Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
基金
美国国家科学基金会;
关键词
Commutator calculus; residual nilpotence; basic commutators; one-relator groups; NILPOTENT GROUPS; CENTRAL SERIES; PRODUCTS; ORDER;
D O I
10.4171/GGD/242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the residual nilpotence of groups defined by basic commutators. We prove that the so-called Hydra groups as well as certain of their generalizations and quotients are, in the main, residually torsion-free nilpotent. By way of contrast we give an example of a group defined by two basic commutators which is not residually torsion-free nilpotent.
引用
收藏
页码:621 / 642
页数:22
相关论文
共 35 条
[1]   ON RESIDUAL NILPOTENCE OF CERTAIN ONE-RELATOR GROUPS [J].
BAUMSLAG, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1968, 21 (05) :491-&
[3]   Finitely generated residually torsion-free nilpotent groups. I [J].
Baumslag, G .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 67 :289-317
[4]  
Baumslag G., 1962, MATH Z, V78, P423, DOI [10.1007/BF01195185, DOI 10.1007/BF01195185]
[5]  
Baumslag G., 1971, LECT NOTES NILPOTENT
[6]  
Baumslag G., UNPUB
[7]  
Baumslag G., 2013, ARXIV13014629MATHGR
[8]   Recognizing powers in nilpotent groups and nilpotent images of free groups [J].
Baumslag, Gilbert .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 83 :149-155
[9]   SOME REFLECTIONS ON PROVING GROUPS RESIDUALLY TORSION-FREE NILPOTENT. I [J].
Baumslag, Gilbert .
ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (01) :315-325
[10]  
Bousfield A. K., 1977, MEM AM MATH SOC, V10