Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials

被引:51
作者
Farmakidis, Nikolaos [1 ]
Youngblood, Nathan [1 ,2 ]
Lee, June Sang [1 ]
Feldmann, Johannes [1 ]
Lodi, Alessandro [1 ]
Li, Xuan [1 ]
Aggarwal, Samarth [1 ]
Zhou, Wen [1 ]
Bogani, Lapo [1 ]
Pernice, Wolfram Hp [3 ]
Wright, C. David [4 ]
Bhaskaran, Harish [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Univ Pittsburgh, Swanson Sch Engn, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[3] Univ Munster, Inst Phys, Munster, Germany
[4] Univ Exeter, Dept Engn, Exeter EX4 4QF, Devon, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
integrated opto-electronics; mixed-mode PCM; phase change photonics;
D O I
10.1002/advs.202200383
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ever-increasing demands for data processing and storage will require seamless monolithic co-integration of electronics and photonics. Phase-change materials are uniquely suited to fulfill this function due to their dual electro-optical sensitivity, nonvolatile retention properties, and fast switching dynamics. The extreme size disparity however between CMOS electronics and dielectric photonics inhibits the realization of efficient and compact electrically driven photonic switches, logic and routing elements. Here, the authors achieve an important milestone in harmonizing the two domains by demonstrating an electrically reconfigurable, ultra-compact and nonvolatile memory that is optically accessible. The platform relies on localized heat, generated within a plasmonic structure; this uniquely allows for both optical and electrical readout signals to be interlocked with the material state of the PCM while still ensuring that the writing operation is electrically decoupled. Importantly, by miniaturization and effective thermal engineering, the authors achieve unprecedented energy efficiency, opening up a path towards low-energy optoelectronic hardware for neuromorphic and in-memory computing.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[2]   Phase change memory technology [J].
Burr, Geoffrey W. ;
Breitwisch, Matthew J. ;
Franceschini, Michele ;
Garetto, Davide ;
Gopalakrishnan, Kailash ;
Jackson, Bryan ;
Kurdi, Buelent ;
Lam, Chung ;
Lastras, Luis A. ;
Padilla, Alvaro ;
Rajendran, Bipin ;
Raoux, Simone ;
Shenoy, Rohit S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (02) :223-262
[3]  
Castillo S.G., 2019, SID S, V807
[4]   Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials [J].
Cheng, Zengguang ;
Rios, Carlos ;
Youngblood, Nathan ;
Wright, C. David ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish .
ADVANCED MATERIALS, 2018, 30 (32)
[5]   On-chip photonic synapse [J].
Cheng, Zengguang ;
Rios, Carlos ;
Pernice, Wolfram H. P. ;
Wright, C. David ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2017, 3 (09)
[6]  
El-Hinnawy N, 2014, IEEE COMP SEMICON
[7]   Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality [J].
Farmakidis, Nikolaos ;
Youngblood, Nathan ;
Li, Xuan ;
Tan, James ;
Swett, Jacob L. ;
Cheng, Zengguang ;
Wright, C. David ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2019, 5 (11)
[8]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[9]   All-optical spiking neurosynaptic networks with self-learning capabilities [J].
Feldmann, J. ;
Youngblood, N. ;
Wright, C. D. ;
Bhaskaran, H. ;
Pernice, W. H. P. .
NATURE, 2019, 569 (7755) :208-+
[10]   Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage [J].
Guerin, Samuel ;
Hayden, Brian ;
Hewak, Daniel W. ;
Vian, Chris .
ACS COMBINATORIAL SCIENCE, 2017, 19 (07) :478-491