Adaptive synchronization of chaotic systems with unknown bounded uncertainties via backstepping approach

被引:26
作者
Bowong, Samuel [1 ]
机构
[1] Univ Douala, Fac Sci, Dept Math & Comp Sci, Lab Appl Math, Douala, Cameroon
关键词
adaptive synchronization; backstepping approach; chaotic systems; observers;
D O I
10.1007/s11071-006-9103-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Backstepping design is proposed for adaptive synchronization of a class of chaotic systems with unknown bounded uncertainties. An adaptive backstepping control law is derived to make the error signals between the master and slave systems asymptotically synchronized without knowing the upper-bounds of the uncertainties in advance. The stability analysis is proved by using a well-known Lyapunov stability. Two illustrative examples are presented to show the effectiveness of the proposed adaptive chaos synchronization.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 32 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]  
[Anonymous], 2013, Nonlinear control systems
[3]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[4]  
BERNARDO MD, 1996, INT J BIFURCAT CHAOS, V6, P557
[5]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[6]  
Bowong S, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066217
[7]   Synchronization of uncertain chaotic systems via backstepping approach [J].
Bowong, S ;
Kakmeni, FMM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (04) :999-1011
[8]  
CHUA LO, 1996, INT J BIFURCAT CHAOS, V6, P85
[9]   An adaptive feedback control of linearizable chaotic systems [J].
Feki, M .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :883-890
[10]  
GRASSI G, 1997, IEEE T CIRCUITS SYST, V44, P1013