LOCATION OF NASH EQUILIBRIA: A RIEMANNIAN GEOMETRICAL APPROACH

被引:0
作者
Kristaly, Alexandru [1 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
关键词
Nash equilibrium point; Riemannian manifold; nonsmooth analysis; NONSMOOTH ANALYSIS; MANIFOLDS; PRINCIPLE; SPACES; GAMES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and location of Nash equilibrium points are studied for a large class of a finite family of payoff functions whose domains are not necessarily convex in the usual sense. The geometric idea is to embed these non-convex domains into suitable Riemannian manifolds regaining certain geodesic convexity properties of them. By using recent non-smooth analysis on Riemannian manifolds and a variational inequality for acyclic sets, an efficient location result of Nash equilibrium points is given. Some examples show the applicability of our results.
引用
收藏
页码:1803 / 1810
页数:8
相关论文
共 50 条
  • [21] NASH EQUILIBRIA WITHOUT CONTINUITY OF THE CHOICE RULES
    Alcantud, Jose C. R.
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1535 - 1540
  • [22] A more refined convexity idea for Nash equilibria
    Ciardiello, Francesco
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2010, 8 (02) : 365 - 393
  • [23] Nash equilibria via duality and homological selection
    Basu, Arnab
    Basu, Samik
    Mahan, M. J.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (04): : 581 - 602
  • [24] Nash equilibria in models of fiscal competition with unemployment
    Kikuchi, Yuya
    Tamai, Toshiki
    [J]. JOURNAL OF PUBLIC ECONOMIC THEORY, 2024, 26 (02)
  • [25] Robust equilibria in location games
    Buechel, Berno
    Roehl, Nils
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 240 (02) : 505 - 517
  • [26] On the Complexity of Pareto-Optimal Nash and Strong Equilibria
    Hoefer, Martin
    Skopalik, Alexander
    [J]. THEORY OF COMPUTING SYSTEMS, 2013, 53 (03) : 441 - 453
  • [27] Graphical Nash Equilibria and Replicator Dynamics on Complex Networks
    Tan, Shaolin
    Wang, Yaonan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 1831 - 1842
  • [28] Asynchronous distributed algorithm for seeking generalized Nash equilibria
    Yi, Peng
    Pavel, Lacra
    [J]. 2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2164 - 2169
  • [29] Dynamical selection of Nash equilibria using reinforcement learning: Emergence of heterogeneous mixed equilibria
    Nicole, Robin
    Sollich, Peter
    [J]. PLOS ONE, 2018, 13 (07):
  • [30] Local Generalized Nash Equilibria With Nonconvex Coupling Constraints
    Scarabaggio, Paolo
    Carli, Raffaele
    Grammatico, Sergio
    Dotoli, Mariagrazia
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (03) : 1427 - 1439