On the Time-periodic Solutions of a Quasi linear Degenerate Parabolic Equation

被引:0
作者
Zhan, Huashui [1 ]
Li, Long [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Fujian Province, Peoples R China
来源
FMA '09: PROCEEDINGS OF THE 7TH IASME / WSEAS INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND AERODYNAMICS | 2009年
关键词
Degenerate parabolic equation; uniqueness; existence; initial boundary problem; VISCOSITY SOLUTIONS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
By Oleinik line's method, the paper gets the existence, uniqueness of the strong solution for the time-periodic boundary problem with the following equation in Omega x (-infinity, +infinity): partial derivative(eta eta)omega + omega partial derivative(xi)omega - partial derivative(tau)omega + f(.,omega) = 0, where Omega subset of R-2 is a rectangle (0, K) x (0, N).
引用
收藏
页码:212 / 219
页数:8
相关论文
共 12 条
[1]   On the viscosity solutions of a stochastic differential utility problem [J].
Antonelli, F ;
Pascucci, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (01) :69-87
[2]   A comparison result for FBSDE with applications to decisions theory [J].
Antonelli, F ;
Barucci, E ;
Mancino, ME .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2001, 54 (03) :407-423
[3]   Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations [J].
Chen, GQ ;
Perthame, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04) :645-668
[4]   Regularity properties of viscosity solutions of a non-Hormander degenerate equation [J].
Citti, G ;
Pascucci, A ;
Polidoro, S .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (09) :901-918
[5]  
CITTI G, 2001, DIFFERENTIAL INTEGRA, V14, DOI DOI 10.1177/197140090101400616
[6]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[7]   ENTROPY SOLUTIONS FOR DIFFUSION-CONVECTION EQUATIONS WITH PARTIAL DIFFUSIVITY [J].
ESCOBEDO, M ;
VAZQUEZ, JL ;
ZUAZUA, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (02) :829-842
[8]  
GILBARG D, 2004, MATH NACHR, V269, P59
[9]  
Oleinik O. A., 1973, 2 ORDER EQUATIONS NO
[10]  
Oleinik O.A., 1999, Mathematical models in boundary layer theory