Weights modulo pe of linear codes over rings

被引:0
作者
Yildiz, Bahattin [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
linear codes; Galois rings; homogeneous weights; Lee weights;
D O I
10.1007/s10623-007-9076-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we look at linear codes over the Galois ring GR(p(l),m) with the homogeneous weight and we prove that the number of codewords with homogeneous weights in a particular residue class modulo p(e) are divisible by high powers of p. We also state a result for a more generalized weight on linear codes over Galois rings. We obtain similar results for the Lee weights of linear codes over F-2m + uF(2m) and we prove that the results we obtain are best possible. The results that we obtain are an improvement to Wilson's results in [Wilson RM (2003) In: Proceedings of international workshop on Cambridge linear algebra and graph coloring].
引用
收藏
页码:147 / 165
页数:19
相关论文
共 14 条
  • [1] Betsumiya K, 2004, DISCRETE MATH, V275, P43, DOI 10.1016/S0012-365X(03)00097-9
  • [2] Z2k-Linear codes
    Carlet, C
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1543 - 1547
  • [3] Constantinescu I., 1997, Problemy Peredachi Informatsii, V33, P22
  • [4] Type IV self-dual codes over rings
    Dougherty, ST
    Gaborit, P
    Harada, M
    Munemasa, A
    Solé, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2345 - 2360
  • [5] Type II codes over F2+uF2
    Dougherty, ST
    Gaborit, P
    Harada, M
    Solé, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (01) : 32 - 45
  • [6] THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES
    HAMMONS, AR
    KUMAR, PV
    CALDERBANK, AR
    SLOANE, NJA
    SOLE, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) : 301 - 319
  • [7] Decompositions and extremal type II codes over Z4
    Huffman, WC
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) : 800 - 809
  • [8] Jungnickel D., 1993, Finite Fields: Structure and Arithmetics
  • [9] AN UPPER BOUND FOR WEIL EXPONENTIAL-SUMS OVER GALOIS RINGS AND APPLICATIONS
    KUMAR, PV
    HELLESETH, T
    CALDERBANK, AR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) : 456 - 468
  • [10] An improvement on the bounds of Weil exponential sums over Gallois rings with some applications
    Ling, S
    Özbudak, F
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) : 2529 - 2539