Analyzing dynamic species abundance distributions using generalized linear mixed models

被引:3
作者
Solbu, Erik Blystad [1 ]
van der Veen, Bert [1 ,2 ,3 ]
Herfindal, Ivar [3 ]
Hovstad, Knut Anders [3 ,4 ]
机构
[1] Norwegian Inst Bioecon Res NIBIO, Dept Landscape & Biodivers, Trondheim, Norway
[2] Norwegian Univ Sci & Technol NTNU, Dept Math, Trondheim, Norway
[3] Norwegian Univ Sci & Technol NTNU, Ctr Biodivers Dynam, Dept Biol, Trondheim, Norway
[4] Norwegian Biodivers Informat Ctr, Trondheim, Norway
关键词
environmental variance; generalized linear mixed model; Poisson lognormal; population dynamics; spatial and temporal correlation; species abundance distribution; species heterogeneity; variance partitioning; ESTUARINE COASTAL LAGOON; COMMUNITY; DIVERSITY; AVEIRO; RIA; BIODIVERSITY;
D O I
10.1002/ecy.3742
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding the mechanisms of ecological community dynamics and how they could be affected by environmental changes is important. Population dynamic models have well known ecological parameters that describe key characteristics of species such as the effect of environmental noise and demographic variance on the dynamics, the long-term growth rate, and strength of density regulation. These parameters are also central for detecting and understanding changes in communities of species; however, incorporating such vital parameters into models of community dynamics is challenging. In this paper, we demonstrate how generalized linear mixed models specified as intercept-only models with different random effects can be used to fit dynamic species abundance distributions. Each random effect has an ecologically meaningful interpretation either describing general and species-specific responses to environmental stochasticity in time or space, or variation in growth rate and carrying capacity among species. We use simulations to show that the accuracy of the estimation depends on the strength of density regulation in discrete population dynamics. The estimation of different covariance and population dynamic parameters, with corresponding statistical uncertainties, is demonstrated for case studies of fish and bat communities. We find that species heterogeneity is the main factor of spatial and temporal community similarity for both case studies.
引用
收藏
页数:14
相关论文
共 38 条
[1]   Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist [J].
Anderson, Marti J. ;
Crist, Thomas O. ;
Chase, Jonathan M. ;
Vellend, Mark ;
Inouye, Brian D. ;
Freestone, Amy L. ;
Sanders, Nathan J. ;
Cornell, Howard V. ;
Comita, Liza S. ;
Davies, Kendi F. ;
Harrison, Susan P. ;
Kraft, Nathan J. B. ;
Stegen, James C. ;
Swenson, Nathan G. .
ECOLOGY LETTERS, 2011, 14 (01) :19-28
[2]   Distance decay of similarity, effects of environmental noise and ecological heterogeneity among species in the spatio-temporal dynamics of a dispersal-limited community [J].
Bellier, Edwige ;
Grotan, Vidar ;
Engen, Steinar ;
Schartau, Ann Kristin ;
Herfindal, Ivar ;
Finstad, Anders G. .
ECOGRAPHY, 2014, 37 (02) :172-182
[3]   Generalized linear mixed models: a practical guide for ecology and evolution [J].
Bolker, Benjamin M. ;
Brooks, Mollie E. ;
Clark, Connie J. ;
Geange, Shane W. ;
Poulsen, John R. ;
Stevens, M. Henry H. ;
White, Jada-Simone S. .
TRENDS IN ECOLOGY & EVOLUTION, 2009, 24 (03) :127-135
[5]   glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling [J].
Brooks, Mollie E. ;
Kristensen, Kasper ;
van Benthem, Koen J. ;
Magnusson, Arni ;
Berg, Casper W. ;
Nielsen, Anders ;
Skaug, Hans J. ;
Machler, Martin ;
Bolker, Benjamin M. .
R JOURNAL, 2017, 9 (02) :378-400
[6]   Variance partitioning in multilevel logistic models that exhibit overdispersion [J].
Browne, WJ ;
Subramanian, SV ;
Jones, K ;
Goldstein, H .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 :599-613
[7]   Understanding evolutionary and ecological dynamics using a continuum limit [J].
Czuppon, Peter ;
Traulsen, Arne .
ECOLOGY AND EVOLUTION, 2021, 11 (11) :5857-5873
[8]   Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature [J].
Davison, Charles W. ;
Rahbek, Carsten ;
Morueta-Holme, Naia .
GLOBAL CHANGE BIOLOGY, 2021, 27 (21) :5414-5429
[9]   A general and dynamic species abundance model, embracing the lognormal and the gamma models [J].
Diserud, OH ;
Engen, S .
AMERICAN NATURALIST, 2000, 155 (04) :497-511
[10]   BioTIME: A database of biodiversity time series for the Anthropocene [J].
Dornelas, Maria ;
Antao, Laura H. ;
Moyes, Faye ;
Bates, Amanda E. ;
Magurran, Anne E. ;
Adam, Dusan ;
Akhmetzhanova, Asem A. ;
Appeltans, Ward ;
Arcos, Jose Manuel ;
Arnold, Haley ;
Ayyappan, Narayanan ;
Badihi, Gal ;
Baird, Andrew H. ;
Barbosa, Miguel ;
Barreto, Tiago Egydio ;
Baessler, Claus ;
Bellgrove, Alecia ;
Belmaker, Jonathan ;
Benedetti-Cecchi, Lisandro ;
Bett, Brian J. ;
Bjorkman, Anne D. ;
Blazewicz, Magdalena ;
Blowes, Shane A. ;
Bloch, Christopher P. ;
Bonebrake, Timothy C. ;
Boyd, Susan ;
Bradford, Matt ;
Brooks, Andrew J. ;
Brown, James H. ;
Bruelheide, Helge ;
Budy, Phaedra ;
Carvalho, Fernando ;
Castaneda-Moya, Edward ;
Chen, Chaolun Allen ;
Chamblee, John F. ;
Chase, Tory J. ;
Siegwart Collier, Laura ;
Collinge, Sharon K. ;
Condit, Richard ;
Cooper, Elisabeth J. ;
Cornelissen, J. Hans C. ;
Cotano, Unai ;
Crow, Shannan Kyle ;
Damasceno, Gabriella ;
Davies, Claire H. ;
Davis, Robert A. ;
Day, Frank P. ;
Degraer, Steven ;
Doherty, Tim S. ;
Dunn, Timothy E. .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2018, 27 (07) :760-786