Catalytic Production of Alanine from Waste Glycerol

被引:115
作者
Wang, Yunzhu [1 ]
Furukawa, Shinya [2 ,3 ]
Song, Song [1 ]
He, Qian [4 ]
Asakura, Hiroyuki [3 ,5 ]
Yan, Ning [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[2] Hokkaido Univ, Inst Catalysis, N-21,W-10, Sapporo, Hokkaido 0010021, Japan
[3] Kyoto Univ, Elements Strategy Initiat Catalysis & Battery, Nishikyo Ku, Kyoto 6158510, Japan
[4] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[5] Kyoto Univ, Grad Sch Engn, Dept Mol Engn, Nishikyo Ku, Kyoto 6158510, Japan
基金
新加坡国家研究基金会;
关键词
amino acids; biomass; glycerol; heterogeneous catalysis; surface chemistry; LACTIC-ACID PRODUCTION; CONVERSION; OXIDATION; HYDROGENOLYSIS; AMINATION; SITES; RU;
D O I
10.1002/anie.201912580
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemical synthesis of amino acids directly from biomass feedstock is rare. Reported here is a one-step protocol to convert crude glycerol, from the biodiesel industry, into 43 % alanine over a Ru1Ni7/MgO catalyst. The multifunctional catalytic system promotes glycerol conversion into lactic acid, and then into alanine. X-ray absorption spectroscopy and scanning transmission electron microscopy revealed the existence of bimetallic RuNi species, whereas density-functional theory calculations suggested Ni-doped Ru substantially decreased the E-a of C-H bond dissociation of lactate alkoxide to form pyruvate, which is the rate-determining step. The catalytic route established in this work creates new opportunities for glycerol utilization and enriches the substrate scope of renewable feedstock to access value-added amino acids.
引用
收藏
页码:2289 / 2293
页数:5
相关论文
共 39 条
[1]   Amination of β-hydroxyl acid esters via cooperative catalysis enables access to bio-based β-amino acid esters [J].
Afanasenko, Anastasiia ;
Yan, Tao ;
Barta, Katalin .
COMMUNICATIONS CHEMISTRY, 2019, 2 (1)
[2]   Unraveling the mechanism of the oxidation of glycerol to dicarboxylic acids over a sonochemically synthesized copper oxide catalyst [J].
Amaniampong, Prince N. ;
Quang Thang Trinh ;
Varghese, Jithin John ;
Behling, Ronan ;
Valange, Sabine ;
Mushrif, Samir H. ;
Jerome, Francois .
GREEN CHEMISTRY, 2018, 20 (12) :2730-2741
[3]  
Arredondo V. M., 2009, U.S. Patent, Patent No. [7,619,118 B2, 7619118]
[4]   Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system [J].
Bruno, Arthur M. ;
Chagas, Carlos Alberto ;
Souza, Mariana M. V. M. ;
Manfro, Robinson L. .
RENEWABLE ENERGY, 2018, 118 :160-171
[5]  
Dai X., 2019, ANGEW CHEM, V131, P5305
[6]   Sustainable Co-Synthesis of Glycolic Acid, Formamides and Formates from 1,3-Dihydroxyacetone by a Cu/Al2O3 Catalyst with a Single Active Sites [J].
Dai, Xingchao ;
Adomeit, Sven ;
Rabeah, Jabor ;
Kreyenschulte, Carsten ;
Brueckner, Angelika ;
Wang, Hongli ;
Shi, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) :5251-5255
[7]   Glycerol as a Building Block for Prochiral Aminoketone, N-Formamide, and N-Methyl Amine Synthesis [J].
Dai, Xingchao ;
Rabeah, Jabor ;
Yuan, Hangkong ;
Brueckner, Angelika ;
Cui, Xinjiang ;
Shi, Feng .
CHEMSUSCHEM, 2016, 9 (22) :3133-3138
[8]  
De Clercq R., 2018, ANGEW CHEM, V130, P3128, DOI DOI 10.1002/ange.201711446
[9]   Catalytic Gas-Phase Production of Lactide from Renewable Alkyl Lactates [J].
De Clercq, Rik ;
Dusselier, Michiel ;
Makshina, Ekaterina ;
Sels, Bert F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (12) :3074-3078
[10]   Catalytic amino acid production from biomass-derived intermediates [J].
Deng, Weiping ;
Wang, Yunzhu ;
Zhang, Sui ;
Gupta, Krishna M. ;
Hulsey, Max J. ;
Asakura, Hiroyuki ;
Liu, Lingmei ;
Han, Yu ;
Karp, Eric M. ;
Beckham, Gregg T. ;
Dyson, Paul J. ;
Jiang, Jianwen ;
Tanaka, Tsunehiro ;
Wang, Ye ;
Yan, Ning .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (20) :5093-5098