W2, p-estimates for fully nonlinear elliptic equations with oblique boundary conditions

被引:10
作者
Byun, Sun-Sig [1 ,2 ]
Han, Jeongmin [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
关键词
Fully nonlinear equations; Oblique derivative problems; Viscosity solutions; W-2; W-p-regularity; DERIVATIVE PROBLEM; VISCOSITY SOLUTIONS; REGULARITY; SPACES;
D O I
10.1016/j.jde.2019.09.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study fully nonlinear elliptic equations with oblique boundary conditions. We obtain a global W-2,W- p-estimate, n - tau(0) < p < infinity, for viscosity solutions of such problems when the boundary of the domain is in C-2,C-alpha for every 0 < alpha <1. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:2125 / 2150
页数:26
相关论文
共 34 条
[1]  
[Anonymous], 2010, GRADUATE STUDIES MAT
[2]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[3]  
[Anonymous], 1995, AM MATH SOC C PUBLIC
[4]   Weighted regularity estimates in Orlicz spaces for fully nonlinear elliptic equations [J].
Byun, Sun-Sig ;
Lee, Mikyoung ;
Ok, Jihoon .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 162 :178-196
[5]   Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations [J].
Byun, Sun-Sig ;
Lee, Mikyoung ;
Palagachev, Dian K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) :4550-4571
[6]   On weighted W2,p estimates for elliptic equations with BMO coefficients in nondivergence form [J].
Byun, Sun-Sig ;
Lee, Mikyoung .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (01)
[7]  
Caffarelli L, 1996, COMMUN PUR APPL MATH, V49, P365
[8]  
Caffarelli L.A, 1989, NONLINEAR VARIATIONA, V193, P99
[9]  
Caffarelli L.A., 1986, NONLINEAR VARIATIONA, VII, P99
[10]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213