Tunable electronic structure in twisted WTe2/WSe2 heterojunction bilayer

被引:9
作者
Chen, Zi-Si
Guo, Wen-Ti
Ye, Jiefeng
Zhong, Kehua [1 ]
Zhang, Jian-Min [1 ]
Huang, Zhigao
机构
[1] Fujian Normal Univ, Coll Phys & Energy, Fujian Prov Key Lab Quantum Manipulat & New Energ, Fuzhou 350117, Peoples R China
基金
中国国家自然科学基金;
关键词
2-D MATERIAL; WSE2; MAGNETORESISTANCE; EFFICIENCY; SURFACE; MONOLAYER; PRESSURE;
D O I
10.1063/5.0086024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electronic structures of non-twisted and twisted WTe2/WSe2 heterojunction bilayers were investigated using first-principles calculations. Our results show that, for the twisted WTe2/WSe2 heterojunction bilayer, the bandgaps are all direct bandgaps, and the bandgap (K-K) increases significantly when the twist angle is from 0 degrees to 10 degrees. However, when the twist angle is from 11 degrees to 14.2 degrees, the bandgaps are all indirect bandgaps and the bandgap (G-K) significantly reduces. The band structure of the twisted WTe2/WSe2 heterojunction bilayer differs significantly from that of the non-twisted. Twisted WTe2/WSe2 heterojunction bilayers can be seen as a direct bandgap to an indirect bandgap conversion when turned to a certain angle. Interestingly, the bandgap of the WTe2/WSe2 heterojunction bilayer is very sensitive to the change in the twist angle. For example, when the twist angle is 10.5 degrees, a maximum bandgap will appear. However, the minimum bandgap is 0.041 eV at 14.2 degrees. Our findings have important guidance for device tuning of two-dimensional heterojunction materials. (C) 2022 Author(s).
引用
收藏
页数:7
相关论文
共 44 条
[1]   Ab initio calculations of structural and electronic properties of WSe2 compound [J].
Abbadi, Hajar ;
Malki, Siham ;
El Farh, Larbi .
MATERIALS TODAY-PROCEEDINGS, 2020, 31 :S130-S133
[2]   Advanced DFT-NEGF Transport Techniques for Novel 2-D Material and Device Exploration Including HfS2/WSe2 van der Waals Heterojunction TFET and WTe2/WS2 Metal/Semiconductor Contact [J].
Afzalian, A. ;
Akhoundi, E. ;
Gaddemane, G. ;
Duflou, R. ;
Houssa, M. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) :5372-5379
[3]   Large, non-saturating magnetoresistance in WTe2 [J].
Ali, Mazhar N. ;
Xiong, Jun ;
Flynn, Steven ;
Tao, Jing ;
Gibson, Quinn D. ;
Schoop, Leslie M. ;
Liang, Tian ;
Haldolaarachchige, Neel ;
Hirschberger, Max ;
Ong, N. P. ;
Cava, R. J. .
NATURE, 2014, 514 (7521) :205-+
[4]   Identification of individual and few layers of WS2 using Raman Spectroscopy [J].
Berkdemir, Ayse ;
Gutierrez, Humberto R. ;
Botello-Mendez, Andres R. ;
Perea-Lopez, Nestor ;
Elias, Ana Laura ;
Chia, Chen-Ing ;
Wang, Bei ;
Crespi, Vincent H. ;
Lopez-Urias, Florentino ;
Charlier, Jean-Christophe ;
Terrones, Humberto ;
Terrones, Mauricio .
SCIENTIFIC REPORTS, 2013, 3
[5]   Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures [J].
Bertolazzi, Simone ;
Krasnozhon, Daria ;
Kis, Andras .
ACS NANO, 2013, 7 (04) :3246-3252
[6]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[7]   Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange [J].
Browning, Paul ;
Eichfeld, Sarah ;
Zhang, Kehao ;
Hossain, Lorraine ;
Lin, Yu-Chuan ;
Wang, Ke ;
Lu, Ning ;
Waite, A. R. ;
Voevodin, A. A. ;
Kim, Moon ;
Robinson, Joshua A. .
2D MATERIALS, 2015, 2 (01)
[8]   Drastic Pressure Effect on the Extremely Large Magnetoresistance in WTe2: Quantum Oscillation Study [J].
Cai, P. L. ;
Hu, J. ;
He, L. P. ;
Pan, J. ;
Hong, X. C. ;
Zhang, Z. ;
Zhang, J. ;
Wei, J. ;
Mao, Z. Q. ;
Li, S. Y. .
PHYSICAL REVIEW LETTERS, 2015, 115 (05)
[9]  
Devadasan JJ, 2003, MATER CHEM PHYS, V77, P397, DOI 10.1016/S0254-0584(02)00095-0
[10]  
Drummond C, 2001, ADV FUNCT MATER, V11, P348, DOI 10.1002/1616-3028(200110)11:5<348::AID-ADFM348>3.0.CO