On the numerical ranges of matrix products

被引:4
作者
Chien, Mao-Ting [1 ]
Ko, Chung-Lien [1 ]
Nakazato, Hiroshi [2 ]
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[2] Hirosaki Univ, Fac Sci & Technol, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
关键词
Numerical ranges; Commutativity; Toeplitz matrices; Continuant matrices;
D O I
10.1016/j.aml.2010.02.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and C be n x n complex matrices. The C-numerical range of A is defined as the set W(c)(A) = {tr(CU*AU) : U is an element of M(n), U*U = I(n)}. We study classes of matrices that two matrices A. B in the respective class satisfy W(C)(AB) = W(C)(BA) for a certain complex matrix C. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:732 / 737
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 1991, Topics in Matrix Analysis, 1991
[2]   Boundary generating curves of the c-numerical range [J].
Chien, MT ;
Nakazato, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 294 (1-3) :67-84
[3]   The c-numerical range of tridiagonal matrices [J].
Chien, MT ;
Nakazato, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 335 (1-3) :55-61
[4]   On geometric properties of the numerical range [J].
Chien, MT ;
Yeh, L ;
Yeh, YT ;
Lin, FZ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 274 :389-410
[5]   On the numerical range of tridiagonal operators [J].
Chien, MT .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :203-214
[6]   Numerical range of a continuant matrix [J].
Chien, MT ;
Huang, JM .
APPLIED MATHEMATICS LETTERS, 2001, 14 (02) :213-216
[7]  
Horn R. A., 1985, Matrix analysis
[8]  
Li C.K., 1994, Linear Multilinear Algebra, V37, P51, DOI [10.1080/03081089408818312, DOI 10.1080/03081089408818312]
[9]  
Markus M., 1987, Linear and Multilinear Algebra, V20, P121, DOI DOI 10.1080/03081088708817748
[10]   The significance of the C-numerical range and the local C-numerical range in quantum control and quantum information [J].
Schulte-Herbrueggen, Thomas ;
Dirr, Gunther ;
Helmke, Uwe ;
Glaser, Steffen J. .
LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (1-2) :3-26