Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization

被引:100
作者
Shi, F. [1 ]
Tian, P. C. [1 ]
Jia, N. [2 ]
Ye, Z. H. [1 ]
Qi, Y. [1 ,2 ]
Liu, C. M. [2 ]
Li, X. W. [1 ,2 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Inst Mat Phys & Chem, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Stainless steel; Weight loss; SEM; Intergranular corrosion; Welding; CRACKING SUSCEPTIBILITY; PRECIPITATION BEHAVIOR; DEFORMATION-BEHAVIOR; PITTING CORROSION; EVOLUTION; SENSITIZATION; POLYCRYSTALS; DESIGN;
D O I
10.1016/j.corsci.2016.02.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grain boundary character distribution (GBCD) and the effect of GBCD optimization on the intergranular corrosion (IGC) of a cold rolled and subsequently annealed nickel-free and manganese-bearing high-nitrogen austenitic stainless steel were investigated. The results show that the fraction of low Sigma coincidence site lattice boundaries increases from 47.3% for the solid solution treated specimen to 83.3% for the specimen cold-rolled by 7% and then annealed at 1423 K for 10 min. Sigma 3 boundaries of high fraction effectively interrupt the connectivity of non-corrosion-resisting boundaries (special boundaries like Sigma 9, Sigma 27, etc. and general high angle boundaries) network, thus improving the IGC resistance. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 51 条
[1]  
Alvarez K, 2008, CORROS SCI, V50, P183, DOI 10.1016/j.corsci.2007.06.004
[2]   Role of nitrogen on the corrosion behavior of austenitic stainless steels [J].
Baba, H ;
Kodama, T ;
Katada, Y .
CORROSION SCIENCE, 2002, 44 (10) :2393-2407
[3]   Two-dimensional grain boundary percolation in alloy 304 stainless steel [J].
Basinger, JA ;
Homer, ER ;
Fullwood, DT ;
Adams, BL .
SCRIPTA MATERIALIA, 2005, 53 (08) :959-963
[4]   STRUCTURE OF HIGH-ANGLE GRAIN BOUNDARIES [J].
BRANDON, DG .
ACTA METALLURGICA, 1966, 14 (11) :1479-&
[5]   Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel [J].
Di Schino, A ;
Kenny, JM .
MATERIALS LETTERS, 2003, 57 (12) :1830-1834
[6]   Hot Deformation Behavior and Microstructural Evolution of a Nickel-Free Austenitic Steel with High Nitrogen Content [J].
Erisir, Ersoy ;
Prahl, Ulrich ;
Bleck, Wolfgang .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (12) :5549-5555
[7]  
Fang X. Y., 2008, THESIS SHANGHAI U SH
[8]   The evolution of cluster of grains with Σ3n relationship in austenitic stainless steel [J].
Fang, Xiaoying ;
Wang, Weiguo ;
Cai, Zhengxu ;
Qin, Congxiang ;
Zhou, Bangxin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (06) :1571-1576
[9]   Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels [J].
Gavriljuk, V. ;
Petrov, Yu. ;
Shanina, B. .
SCRIPTA MATERIALIA, 2006, 55 (06) :537-540
[10]   Grain boundary ensembles in polycrystals [J].
Gertsman, VY ;
Janecek, M ;
Tangri, K .
ACTA MATERIALIA, 1996, 44 (07) :2869-2882