Modeling the Consequences of Social Distancing Over Epidemics Spreading in Complex Social Networks: From Link Removal Analysis to SARS-CoV-2 Prevention

被引:9
作者
Bellingeri, M. [1 ,2 ]
Turchetto, M. [2 ]
Bevacqua, D. [3 ]
Scotognella, F. [1 ,4 ]
Alfieri, R. [2 ]
Nguyen, Q. [5 ,6 ]
Cassi, D. [2 ]
机构
[1] Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci, Milan, Italy
[2] Dipartimento Sci Matemat Fis & Informat, Parma, Italy
[3] INRAE, PSH, UR 1115, Avignon, France
[4] Ist Italiano Tecnol, Ctr Nano Sci & Technol PoliMi, Via Giovanni Pascoli, Milan, Italy
[5] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh, Vietnam
[6] Ton Duc Thang Univ, Fac Finance & Banking, Ho Chi Minh, Vietnam
基金
欧洲研究理事会;
关键词
complex network; social networks; epidemic; SARS-CoV-2; link (node) removal; STRATEGIES; IMMUNIZATION; DYNAMICS;
D O I
10.3389/fphy.2021.681343
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this perspective, we describe how the link removal (LR) analysis in social complex networks may be a promising tool to model non-pharmaceutical interventions (NPIs) and social distancing to prevent epidemics spreading. First, we show how the extent of the epidemic spreading and NPIs effectiveness over complex social networks may be evaluated with a static indicator, that is, the classic largest connected component (LCC). Then we explain how coupling the LR analysis and type SIR epidemiological models (EM) provide further information by including the temporal dynamics of the epidemic spreading. This is a promising approach to investigate important aspects of the recent NPIs applied by government to contain SARS-CoV-2, such as modeling the effect of the social distancing severity and timing over different network topologies. Further, implementing different link removal strategies to halt epidemics spreading provides information to individuate more effective NPIs, representing an important tool to offer a rationale sustaining policies to prevent SARS-CoV-2 and similar epidemics.
引用
收藏
页数:7
相关论文
共 54 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   SOME DISCRETE-TIME SI, SIR, AND SIS EPIDEMIC MODELS [J].
ALLEN, LJS .
MATHEMATICAL BIOSCIENCES, 1994, 124 (01) :83-105
[3]   An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics [J].
Amaral, Marco A. ;
de Oliveira, Marcelo M. ;
Javarone, Marco A. .
CHAOS SOLITONS & FRACTALS, 2021, 143 (143)
[4]   A comparative analysis of link removal strategies in real complex weighted networks [J].
Bellingeri, M. ;
Bevacqua, D. ;
Scotognella, F. ;
Alfieri, R. ;
Cassi, D. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]  
Bellingeri M, 2019, SCI REP-UK, V9, DOI [10.1038/s41598-019-47119-2, 10.1038/s41598-019-50556-8]
[6]   Link and Node Removal in Real Social Networks: A Review [J].
Bellingeri, Michele ;
Bevacqua, Daniele ;
Scotognella, Francesco ;
Alfieri, Roberto ;
Nguyen, Quang ;
Montepietra, Daniele ;
Cassi, Davide .
FRONTIERS IN PHYSICS, 2020, 8
[7]   Optimization strategies with resource scarcity: From immunization of networks to the traveling salesman problem [J].
Bellingeri, Michele ;
Agliari, Elena ;
Cassi, Davide .
MODERN PHYSICS LETTERS B, 2015, 29 (29)
[8]   Efficiency of attack strategies on complex model and real-world networks [J].
Bellingeri, Michele ;
Cassi, Davide ;
Vincenzi, Simone .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 414 :174-180
[9]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[10]  
Bollobas B., 2004, INTERNET MATH, V1, P1, DOI [DOI 10.1080/15427951.2004.10129080, 10.1080/15427951.2004.10129080]