Compatibility Complex for Black Hole Spacetimes

被引:4
作者
Aksteiner, Steffen [1 ]
Andersson, Lars [1 ]
Baeckdahl, Thomas [1 ,2 ,3 ]
Khavkine, Igor [4 ]
Whiting, Bernard [5 ]
机构
[1] Albert Einstein Inst, Muhlenberg 1, D-14476 Potsdam, Germany
[2] Chalmers Univ Technol, Math Sci, S-41296 Gothenburg, Sweden
[3] Univ Gothenburg, S-41296 Gothenburg, Sweden
[4] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[5] Univ Florida, Dept Phys, 2001 Museum Rd, Gainesville, FL 32611 USA
基金
瑞典研究理事会;
关键词
SYSTEMS;
D O I
10.1007/s00220-021-04078-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The set of local gauge invariant quantities for linearized gravity on the Kerr spacetime presented by two of the authors (Aksteiner and Backdahl in Phys Rev Lett 121:051104, 2018) is shown to be complete. In particular, any gauge invariant quantity for linearized gravity on Kerr that is local and of finite order in derivatives can be expressed in terms of these gauge invariants and derivatives thereof. The proof is carried out by constructing a complete compatibility complex for the Killing operator, and demonstrating the equivalence of the gauge invariants from Aksteiner and Backdahl (Phys Rev Lett 121:051104, 2018) with the first compatibility operator from that complex.
引用
收藏
页码:1585 / 1614
页数:30
相关论文
共 40 条
[1]   New identities for linearized gravity on the Kerr spacetime [J].
Aksteiner, Steffen ;
Andersson, Lars ;
Backdahl, Thomas .
PHYSICAL REVIEW D, 2019, 99 (04)
[2]   All Local Gauge Invariants for Perturbations of the Kerr Spacetime [J].
Aksteiner, Steffen ;
Baeckdahl, Thomas .
PHYSICAL REVIEW LETTERS, 2018, 121 (05)
[3]   Second order symmetry operators [J].
Andersson, Lars ;
Baeckdahl, Thomas ;
Blue, Pieter .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (13)
[4]  
[Anonymous], 1995, Complexes of differential operators
[5]   A formalism for the calculus of variations with spinors [J].
Backdahl, Thomas ;
Kroon, Juan A. Valiente .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
[6]  
Baer C., 2007, ESI LECT MATH PHYS, V2
[7]   Gravitational self-force and gauge transformations [J].
Barack, L ;
Ori, A .
PHYSICAL REVIEW D, 2001, 64 (12)
[8]  
Calderbank DMJ, 2001, J REINE ANGEW MATH, V537, P67
[9]   IDEAL characterization of isometry classes of FLRW and inflationary spacetimes [J].
Canepa, Giovanni ;
Dappiaggi, Claudio ;
Khavkine, Igor .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (03)
[10]   Bernstein-Gelfand-Gelfand sequences [J].
Cap, A ;
Slovák, J ;
Soucek, V .
ANNALS OF MATHEMATICS, 2001, 154 (01) :97-113