Function-based hybrid synchronization types and their coexistence in non-identical fractional-order chaotic systems

被引:1
作者
Ouannas, Adel [1 ]
Grassi, Giuseppe [2 ]
Wang, Xiong [3 ]
Ziar, Toufik [4 ]
Viet-Thanh Pham [5 ]
机构
[1] Univ Tebessa, Dept Math, Tebessa, Algeria
[2] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy
[3] Shenzhen Univ, Inst Adv Study, Shenzhen, Peoples R China
[4] Univ Tebessa, Dept Mat Sci, Tebessa, Algeria
[5] Ton Duc Thang Univ, Fac Elect & Elect Engn, Modeling Evolutionary Algorithms Simulat & Artifi, Ho Chi Minh City, Vietnam
基金
中国国家自然科学基金;
关键词
Coexistence of synchronization types; Full-state hybrid function projective synchronization; Inverse full-state hybrid function projective synchronization; Incommensurate fractional-order systems; Non-identical systems; FUNCTION PROJECTIVE SYNCHRONIZATION; HYPERCHAOTIC SYSTEMS; NEURAL-NETWORKS; STABILITY;
D O I
10.1186/s13662-018-1772-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents new results related to the coexistence of function-based hybrid synchronization types between non-identical incommensurate fractional-order systems characterized by different dimensions and orders. Specifically, a new theorem is illustrated, which ensures the coexistence of the full-state hybrid function projective synchronization (FSHFPS) and the inverse full-state hybrid function projective synchronization (IFSHFPS) between wide classes of three-dimensional master systems and four-dimensional slave systems. In order to show the capability of the approach, a numerical example is reported, which illustrates the coexistence of FSHFPS and IFSHFPS between the incommensurate chaotic fractional-order unified system and the incommensurate hyperchaotic fractional-order Lorenz system.
引用
收藏
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 2017, PROGR FRACT DIFFER A
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]  
[Anonymous], 1993, Chaos in Dynamical Systems
[4]  
Aziz-Alaoui M. A., 2006, Encyclopedia of Mathematical Physics, V5, P213
[5]   The evolution of chaotic dynamics for fractional unified system [J].
Deng, Weihua ;
Li, Changpin .
PHYSICS LETTERS A, 2008, 372 (04) :401-407
[6]   Improved quasi-synchronization criteria for delayed fractional-order memristor-based neural networks via linear feedback control [J].
Fan, Yingjie ;
Huang, Xia ;
Wang, Zhen ;
Li, Yuxia .
NEUROCOMPUTING, 2018, 306 :68-79
[7]   Exponential stability analysis of travelling waves solutions for nonlinear delayed cellular neural networks [J].
Guo, Yingxin .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (04) :490-503
[8]   An Efficient Nonstandard Finite Difference Scheme for a Class of Fractional Chaotic Systems [J].
Hajipour, Mojtaba ;
Jajarmi, Amin ;
Baleanu, Dumitru .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (02)
[9]   Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems [J].
Hu, Manfeng ;
Xu, Zhenyuan ;
Zhang, Rong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) :456-464
[10]   Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches [J].
Huang, Xia ;
Fan, Yingjie ;
Jia, Jia ;
Wang, Zhen ;
Li, Yuxia .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (14) :2317-2327