Computational Modeling of 2D Materials under High Pressure and Their Chemical Bonding: Silicene as Possible Field-Effect Transistor

被引:20
作者
Tantardini, Christian [5 ,6 ]
Kvashnin, Alexander G. [5 ]
Gatti, Carlo [1 ]
Yakobson, Boris, I [2 ,3 ,4 ]
Gonze, Xavier [5 ,7 ]
机构
[1] CNR, SCITEC Ist Sci & Tecnol Chim Giulio Natta, I-20133 Milan, Italy
[2] Taif Univ, Dept Chem, At Taif 26571, Saudi Arabia
[3] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[4] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[5] Skolkovo Inst Sci & Technol, Moscow 121025, Russia
[6] Inst Solid State Chem & Mechanochem SB RAS, Novosibirsk 630128, Russia
[7] Catholic Univ Louvain, B-1348 Ottignies, Belgium
基金
俄罗斯科学基金会;
关键词
2D structures; honeycomb; Abinit; silicene; field-effect transistor; pressure sensors; GRAPHENE; FILMS;
D O I
10.1021/acsnano.0c10609
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To study the possibility for silicene to be employed as a field-effect transistor (FET) pressure sensor, we explore the chemistry of monolayer and multilayered silicene focusing on the change in hybridization under pressure. Ab initio computations show that the effect of pressure depends greatly on the thickness of the silicene film, but also reveals the influence of real experimental conditions, where the pressure is not hydrostatic. For this purpose, we introduce anisotropic strain states. With pure uniaxial stress applied to silicene layers, a path for sp(3) silicon to sp(3)d silicon is found, unlike with pure hydrostatic pressure. Even with mixed-mode stress (in-plane pressure half of the out-of-plane one), we find no such path. In addition to introducing our theoretical approach to study 2D materials, we show how the hybridization change of silicene under pressure makes it a good FET pressure sensor.
引用
收藏
页码:6861 / 6871
页数:11
相关论文
共 73 条
[41]   Heterostructures formed through abraded van der Waals materials [J].
Nutting, Darren ;
Felix, Jorlandio F. ;
Tillotson, Evan ;
Shin, Dong-Wook ;
De Sanctis, Adolfo ;
Chang, Hong ;
Cole, Nick ;
Russo, Saverio ;
Woodgate, Adam ;
Leontis, Ioannis ;
Fernandez, Henry A. ;
Craciun, Monica F. ;
Haigh, Sarah J. ;
Withers, Freddie .
NATURE COMMUNICATIONS, 2020, 11 (01)
[42]   Conversion of multilayer graphene into continuous ultrathin sp3-bonded carbon films on metal surfaces [J].
Odkhuu, Dorj ;
Shin, Dongbin ;
Ruoff, Rodney S. ;
Park, Noejung .
SCIENTIFIC REPORTS, 2013, 3
[43]   Pressure dependence of direct optical transitions in ReS2 and ReSe2 [J].
Oliva, Robert ;
Laurien, Magdalena ;
Dybala, Filip ;
Kopaczek, Jan ;
Qin, Ying ;
Tongay, Sefaattin ;
Rubel, Oleg ;
Kudrawiec, Robert .
NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
[44]   CRITIC2: A program for real-space analysis of quantum chemical interactions in solids [J].
Otero-de-la-Roza, A. ;
Johnson, Erin R. ;
Luana, Victor .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (03) :1007-1018
[45]   Free-Standing Bilayer Silicene: The Effect of Stacking Order on the Structural, Electronic, and Transport Properties [J].
Padilha, Jose E. ;
Pontes, Renato B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (07) :3818-3825
[46]   Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials [J].
Park, Cheol-Hwan ;
Yang, Li ;
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
NATURE PHYSICS, 2008, 4 (03) :213-217
[47]   New generation of massless Dirac fermions in graphene under external periodic potentials [J].
Park, Cheol-Hwan ;
Yang, Li ;
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)
[48]  
Perdew J. P., 1997, PHYS REV LETT, V7, P3865
[49]   Dirac Cones and Minigaps for Graphene on Ir(111) [J].
Pletikosic, I. ;
Kralj, M. ;
Pervan, P. ;
Brako, R. ;
Coraux, J. ;
N'Diaye, A. T. ;
Busse, C. ;
Michely, T. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[50]   Multilayer silicene: Structure, electronics, and mechanical property [J].
Qian, Chen ;
Li, Zhi .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 172 (172)