Computational Modeling of 2D Materials under High Pressure and Their Chemical Bonding: Silicene as Possible Field-Effect Transistor

被引:20
作者
Tantardini, Christian [5 ,6 ]
Kvashnin, Alexander G. [5 ]
Gatti, Carlo [1 ]
Yakobson, Boris, I [2 ,3 ,4 ]
Gonze, Xavier [5 ,7 ]
机构
[1] CNR, SCITEC Ist Sci & Tecnol Chim Giulio Natta, I-20133 Milan, Italy
[2] Taif Univ, Dept Chem, At Taif 26571, Saudi Arabia
[3] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[4] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[5] Skolkovo Inst Sci & Technol, Moscow 121025, Russia
[6] Inst Solid State Chem & Mechanochem SB RAS, Novosibirsk 630128, Russia
[7] Catholic Univ Louvain, B-1348 Ottignies, Belgium
基金
俄罗斯科学基金会;
关键词
2D structures; honeycomb; Abinit; silicene; field-effect transistor; pressure sensors; GRAPHENE; FILMS;
D O I
10.1021/acsnano.0c10609
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To study the possibility for silicene to be employed as a field-effect transistor (FET) pressure sensor, we explore the chemistry of monolayer and multilayered silicene focusing on the change in hybridization under pressure. Ab initio computations show that the effect of pressure depends greatly on the thickness of the silicene film, but also reveals the influence of real experimental conditions, where the pressure is not hydrostatic. For this purpose, we introduce anisotropic strain states. With pure uniaxial stress applied to silicene layers, a path for sp(3) silicon to sp(3)d silicon is found, unlike with pure hydrostatic pressure. Even with mixed-mode stress (in-plane pressure half of the out-of-plane one), we find no such path. In addition to introducing our theoretical approach to study 2D materials, we show how the hybridization change of silicene under pressure makes it a good FET pressure sensor.
引用
收藏
页码:6861 / 6871
页数:11
相关论文
共 73 条
[1]  
[Anonymous], 1994, J MOL STRUCT THEOCHE
[2]   Tunable Graphene Electronics with Local Ultrahigh Pressure [J].
Ares, Pablo ;
Pisarra, Michele ;
Segovia, Pilar ;
Diaz, Cristina ;
Martin, Fernando ;
Michel, Enrique G. ;
Zamora, Felix ;
Gomez-Navarro, Cristina ;
Gomez-Herrero, Julio .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (08)
[3]   THE CHARACTERIZATION OF ATOMIC INTERACTIONS [J].
BADER, RFW ;
ESSEN, H .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (05) :1943-1960
[4]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[5]   Extra Dirac points in the energy spectrum for superlattices on single-layer graphene [J].
Barbier, M. ;
Vasilopoulos, P. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 81 (07)
[6]   FIRST-PRINCIPLE CONSTANT-PRESSURE MOLECULAR-DYNAMICS [J].
BERNASCONI, M ;
CHIAROTTI, GL ;
FOCHER, P ;
SCANDOLO, S ;
TOSATTI, E ;
PARRINELLO, M .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1995, 56 (3-4) :501-505
[7]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]  
Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222
[10]   Diamond-like C2H nanolayer, diamane: Simulation of the structure and properties [J].
Chernozatonskii, L. A. ;
Sorokin, P. B. ;
Kvashnin, A. G. ;
Kvashnin, D. G. .
JETP LETTERS, 2009, 90 (02) :134-138