Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications

被引:43
作者
Gan, Ruijun [1 ]
Ma, Yanjiao [1 ]
Li, Shanshan [1 ]
Zhang, Fengxiang [1 ]
He, Gaohong [1 ]
机构
[1] Dalian Univ Technol, Sch Chem & Petr Engn, State Key Lab Fine Chem, Panjin 124221, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Vanadium redox flow battery; ASIPN; Cross-linking; Amphoteric membrane; ANION-EXCHANGE MEMBRANES; POLY(ETHER ETHER KETONE); COMPOSITE MEMBRANE; FUEL-CELL; POLYMERIZATION; METHACRYLATE; PERFORMANCE;
D O I
10.1016/j.jechem.2017.09.017
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
For improvement of vanadium redox flow battery (VRB) performance, novel amphoteric semiinterpenetrating membranes (ASIPN) were prepared using poly(ether ether ketone) (PEEK) and polysulfone (PSf), the former bearing sulfonic groups and the latter imidazolium. These two groups form ionic crosslinks between PEEK and PSf; meanwhile, covalent cross links were built between PSf chains with addition of N-(3-aminopropyl)-imidazole. The amphoteric nature of the membrane allows facile proton and anion transport; the IPN structure and the presence of imidazolium cation effectively suppress vanadium ion crossover through the membrane. Therefore, the ASIPN based VRBs show higher Coulombic efficiency and energy efficiency than that assembled with pristine SPEEK and Nafion 212 membranes. Our work demonstrates that the ASIPN membranes are promising for VRB applications. (C) 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:1189 / 1197
页数:9
相关论文
共 34 条
[1]   Dramatic performance gains in vanadium redox flow batteries through modified cell architecture [J].
Aaron, D. S. ;
Liu, Q. ;
Tang, Z. ;
Grim, G. M. ;
Papandrew, A. B. ;
Turhan, A. ;
Zawodzinski, T. A. ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2012, 206 :450-453
[2]   Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery [J].
Aziz, Md. Abdul ;
Shanmugam, Sangaraju .
JOURNAL OF POWER SOURCES, 2017, 337 :36-44
[3]   Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries [J].
Chen, Dongyang ;
Hickner, Michael A. ;
Agar, Ertan ;
Kumbur, E. Caglan .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 26 :37-40
[4]   Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells [J].
Fang, Jun ;
Shen, Pei Kang .
JOURNAL OF MEMBRANE SCIENCE, 2006, 285 (1-2) :317-322
[5]   A novel amphoteric ion exchange membrane synthesized by radiation-induced grafting α-methylstyrene and N,N-dimethylaminoethyl methacrylate for vanadium redox flow battery application [J].
Hu, Guowen ;
Wang, Yu ;
Ma, Jun ;
Qiu, Jingyi ;
Peng, Jing ;
Li, Jiuqiang ;
Zhai, Maolin .
JOURNAL OF MEMBRANE SCIENCE, 2012, 407 :184-192
[6]   A multilayered membrane for vanadium redox flow battery [J].
Jia, Chuankun ;
Liu, Jianguo ;
Yan, Chuanwei .
JOURNAL OF POWER SOURCES, 2012, 203 :190-194
[7]   Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells [J].
Lei, Linfeng ;
Zhu, Xingye ;
Xu, Jianfeng ;
Qian, Huidong ;
Zou, Zhiqing ;
Yang, Hui .
JOURNAL OF POWER SOURCES, 2017, 350 :41-48
[8]   Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries [J].
Leung, P. K. ;
Xu, Q. ;
Zhao, T. S. ;
Zeng, L. ;
Zhang, C. .
ELECTROCHIMICA ACTA, 2013, 105 :584-592
[9]   Ion exchange membranes for vanadium redox flow battery (VRB) applications [J].
Li, Xianfeng ;
Zhang, Huamin ;
Mai, Zhensheng ;
Zhang, Hongzhang ;
Vankelecom, Ivo .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (04) :1147-1160
[10]   Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application [J].
Li, Yun ;
Zhang, Huamin ;
Zhang, Hongzhang ;
Cao, Jingyu ;
Xu, Wanxing ;
Li, Xianfeng .
JOURNAL OF MEMBRANE SCIENCE, 2014, 454 :478-487