Fluid-structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell

被引:31
|
作者
Khanafer, Khalil [2 ,3 ]
Alamiri, Abdalla [4 ]
Pop, Ioan [1 ]
机构
[1] Univ Cluj, Fac Math, R-3400 Cluj Napoca, Romania
[2] Univ Michigan, Dept Biomed Engn, Vasc Mech Lab, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Vasc Surg Sect, Ann Arbor, MI 48109 USA
[4] United Arab Emirates Univ, Dept Mech Engn, Al Ain, U Arab Emirates
关键词
Fluid-structure interaction; Fluidic cell; Heat transfer; Microcantilever; FORCE MICROSCOPE CANTILEVERS; OPTIMIZATION; DESIGN; DEFLECTIONS; ARRAY;
D O I
10.1016/j.ijheatmasstransfer.2010.01.029
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study analyzes the effect of the flow conditions and the geometric variation of the microcantilever's bluff body on the microcantilever detection capabilities within a fluidic using a finite element fluid-structure interaction (FSI) model Periodic steady-state results of the current investigation show that the magnitude of the inlet fluid velocity, elasticity of the microcantilever, random noise, and the height of the bluff body has respective profound effect on deflection of the microcantilever. Low inlet fluid velocity condition exhibits no vortices around the microcantilever However, the introduction of a random noise in the fluidic cell may cause the microcantilever to oscillate in a harmonic mode at low velocity. The results of this study show that microcantilevers excite earlier for large height compared with smaller heights of the bluff body at high inlet fluid velocity. This work paves the road for researchers in the area microcantilever to design efficient microcantilevers that display least errors in the measurements. (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:1646 / 1653
页数:8
相关论文
共 50 条
  • [1] Fluid-structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell
    Khanafer, Khalil
    Vafai, Kambiz
    Gaith, Mohamad
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 75 : 315 - 322
  • [2] Fluid-structure interaction analysis of heat exchanger with torsional flow in the shell side
    Gu, Xin
    Wang, Guan
    Zhang, Qianxin
    Chen, Cheng
    Li, Ning
    Chen, Weijie
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (01) : 479 - 489
  • [3] Modeling of the fluid-structure interaction in a fluidic sensor cell
    Reichel, Erwin K.
    Riesch, Christian
    Keplinger, Franz
    Jakoby, Bernhard
    SENSORS AND ACTUATORS A-PHYSICAL, 2009, 156 (01) : 222 - 228
  • [4] Fluid-Structure Interaction Analysis of Flexible Marine Propellers
    Sun, Hai-tao
    Xiong, Ying
    VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 479 - 482
  • [5] Analysis of heat transfer and flow characteristics of a microcantilever beam for piezoelectric energy harvesting
    Khanafer, Khalil
    Vafai, Kambiz
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 98 : 265 - 272
  • [6] Fluid-structure interaction analysis of flexible turbomachinery
    Campbell, R. L.
    Paterson, E. G.
    JOURNAL OF FLUIDS AND STRUCTURES, 2011, 27 (08) : 1376 - 1391
  • [7] Fluid-structure interaction analysis of buoyancy-driven fluid and heat transfer through an enclosure with a flexible thin partition
    Zargartalebi, H.
    Ghalambaz, M.
    Chamkha, A.
    Pop, Ioan
    Nezhad, Amir Sanati
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (09) : 2072 - 2088
  • [8] Heat transfer and thermal stress analysis in fluid-structure coupled field
    Li, Ming-Jian
    Pan, Jun-Hua
    Ni, Ming-Jiu
    Zhang, Nian-Mei
    APPLIED THERMAL ENGINEERING, 2015, 88 : 473 - 479
  • [9] Fluid-structure interaction of blood flow around a vein valve
    Hajati, Zahra
    Moghanlou, Farhad Sadegh
    Vajdi, Mohammad
    Razavi, Seyed Esmail
    Matin, Somaieh
    BIOIMPACTS, 2020, 10 (03) : 169 - 175
  • [10] Fluid-structure interaction of single flexible cylinder in axial flow
    Liu, Z. G.
    Liu, Y.
    Lu, J.
    COMPUTERS & FLUIDS, 2012, 56 : 143 - 151