Spatial Pyramid Pooling With 3D Convolution Improves Lung Cancer Detection

被引:18
作者
Causey, Jason [1 ,2 ]
Li, Keyu [3 ]
Chen, Xianghao [3 ]
Dong, Wei [4 ]
Walker, Karl [5 ]
Qualls, Jake [1 ,2 ]
Stubblefield, Jonathan [1 ,2 ]
Moore, Jason H. [6 ]
Guan, Yuanfang [3 ]
Huang, Xiuzhen [1 ,2 ]
机构
[1] Arkansas State Univ, Ctr Boundary Thinking CNBT, Dept Comp Sci, Jonesboro, AR 72467 USA
[2] Arkansas State Univ, Ctr Boundary Thinking CNBT, Mol Bioscicneces Program, Jonesboro, AR 72467 USA
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Ann Arbor Algorithm, Ann Arbor, MI 48103 USA
[5] Univ Arkansas Pine Bluff, Dept Math & Comp Sci, Pine Bluff, AR 55455 USA
[6] Univ Penn, Inst Biomed Informat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Cancer; Computed tomography; Lung; Biological system modeling; Training; Testing; Machine learning; Lung cancer screening; low-dose CT scan; deep learning algorithm; convolutional neural network (CNN); medical imaging; CURVES; AREAS;
D O I
10.1109/TCBB.2020.3027744
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Lung cancer is the leading cause of cancer deaths. Low-dose computed tomography (CT)screening has been shown to significantly reduce lung cancer mortality but suffers from a high false positive rate that leads to unnecessary diagnostic procedures. The development of deep learning techniques has the potential to help improve lung cancer screening technology. Here we present the algorithm, DeepScreener, which can predict a patient's cancer status from a volumetric lung CT scan. DeepScreener is based on our model of Spatial Pyramid Pooling, which ranked 16th of 1972 teams (top 1 percent)in the Data Science Bowl 2017 competition (DSB2017), evaluated with the challenge datasets. Here we test the algorithm with an independent set of 1449 low-dose CT scans of the National Lung Screening Trial (NLST)cohort, and we find that DeepScreener has consistent performance of high accuracy. Furthermore, by combining Spatial Pyramid Pooling and 3D Convolution, it achieves an AUC of 0.892, surpassing the previous state-of-the-art algorithms using only 3D convolution. The advancement of deep learning algorithms can potentially help improve lung cancer detection with low-dose CT scans.
引用
收藏
页码:1165 / 1172
页数:8
相关论文
共 24 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Lung Nodule Detection using 3D Convolutional Neural Networks Trained on Weakly Labeled Data [J].
Anirudhi, Rushil ;
Thiagarajan, Jayaraman J. ;
Bremer, Timo ;
Kim, Hyojin .
MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
[3]  
[Anonymous], 2013, LUNG CANC SCREENING
[4]  
[Anonymous], 2017, DATA SCI BOWL 2017
[5]  
[Anonymous], 2016, LUNA16 CHALLENGE
[6]  
[Anonymous], 2016, PROC 22 ACM SIGKDD I, DOI DOI 10.1145/2939672.2939785
[7]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[8]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[9]   Highly accurate model for prediction of lung nodule malignancy with CT scans [J].
Causey, Jason L. ;
Zhang, Junyu ;
Ma, Shiqian ;
Jiang, Bo ;
Qualls, Jake A. ;
Politte, David G. ;
Prior, Fred ;
Zhang, Shuzhong ;
Huang, Xiuzhen .
SCIENTIFIC REPORTS, 2018, 8
[10]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057