Multi-objective performance optimisation for model predictive control by goal attainment

被引:50
作者
Exadaktylos, Vasileios [1 ]
Taylor, C. James [2 ]
机构
[1] Katholieke Univ Leuven, Dept Biosyst, Div BIORES Measure Model & Manage Bioresponses M3, B-3001 Heverlee, Belgium
[2] Univ Lancaster, Dept Engn, Lancaster LA1 4YR, England
关键词
model predictive control; non-minimal state space; optimal controller tuning; decoupling; STATE-VARIABLE FEEDBACK; SYSTEMS; DESIGN; MPC; ALGORITHMS;
D O I
10.1080/00207171003736295
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes an approach for performance tuning of model predictive control (MPC) using goal-attainment optimisation of the cost function weighting matrices. The approach is developed for three formulations of the control problem: (i) minimal and (ii) non-minimal design based on the same cost function and (iii) a non-minimal MPC approach with an explicit integral-of-error state variable and modified cost function. This approach is based on earlier research into multi-objective optimisation for proportional-integral-plus control systems. Simulation experiments for a 3-input, 3-output Shell heavy oil fractionator model illustrate the feasibility of MPC goal attainment for multivariable decoupling and attainment of a specific output response. For this example, the integral-of-error state variable offers improved design flexibility and hence, when it is combined with the proposed tuning method, yields an improved closed-loop response in comparison to minimal MPC.
引用
收藏
页码:1374 / 1386
页数:13
相关论文
共 33 条
[1]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[2]  
Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
[3]   Proportional-integral-plus (PIP) design for delta (δ) operator systems -: Part 2.: MIMO systems [J].
Chotai, A ;
Young, P ;
McKenna, P ;
Tych, W .
INTERNATIONAL JOURNAL OF CONTROL, 1998, 70 (01) :149-168
[4]  
EXADAKTYLOS V, 2006, UKACC INT C CONTR 06
[5]   APPLICATION OF MULTIOBJECTIVE OPTIMIZATION TO COMPENSATOR DESIGN FOR SISO CONTROL-SYSTEMS [J].
FLEMING, PJ ;
PASHKEVICH, AP .
ELECTRONICS LETTERS, 1986, 22 (05) :258-259
[6]   Evolutionary algorithms in control systems engineering: a survey [J].
Fleming, PJ ;
Purshouse, RC .
CONTROL ENGINEERING PRACTICE, 2002, 10 (11) :1223-1241
[7]  
Gajic Z., 1996, MODERN CONTROL SYSTE
[8]   Performance evaluation of two industrial MPC controllers [J].
Gao, H ;
Patwardhan, R ;
Akamatsu, K ;
Hashimoto, Y ;
Emoto, G ;
Shah, SL ;
Huang, B .
CONTROL ENGINEERING PRACTICE, 2003, 11 (12) :1371-1387
[9]   Tuning of PI controllers with one-way decoupling in 2x2 MIMO systems based on finite frequency response data [J].
Gilbert, AF ;
Yousef, A ;
Natarajan, K ;
Deighton, S .
JOURNAL OF PROCESS CONTROL, 2003, 13 (06) :553-567
[10]   Infinite horizon MPC with non-minimal state space feedback [J].
Gonzalez, Alejandro H. ;
Perez, Jose M. ;
Odloak, Darci .
JOURNAL OF PROCESS CONTROL, 2009, 19 (03) :473-481