Modeling of ionosphere time series using wavelet neural networks (case study: N-W of Iran)

被引:23
作者
Razin, Mir Reza Ghaffari [1 ]
Voosoghi, Behzad [1 ]
机构
[1] KN Toosi Univ Technol, Dept Geodesy & Geomatics Engn, 1346 Vali Asr Ave, Tehran, Iran
关键词
Ionosphere; WNN; GPS; IRI2012; TEC;
D O I
10.1016/j.asr.2016.04.006
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Wavelet neural networks (WNNs) are important tools for analyzing time series especially when it is non-linear and non-stationary. It takes advantage of high resolution of wavelets and feed forward nature of neural networks (NNs). Therefore, in this paper, WNNs is used for modeling of ionosphere time series in Iran. To apply the method, observations collected at 22 GPS stations in 12 successive days of 2012 (DOY# 219-230) from Azerbaijan local GPS network are used. For training of WNN, back-propagation (BP) algorithm is used. The results of WNN compared with results of international reference ionosphere 2012 (IRI-2012) and international GNSS service (IGS) products. To assess the error of WNN, statistical indicators, relative and absolute errors are used. Minimum relative error for WNN compared with GPS TEC is 6.37% and maximum relative error is 12.94%. Also the maximum and minimum absolute error computed 6.32 and 0.13 TECU, respectively. Comparison of diurnal predicted TEC values from the WNN model and the IRI-2012 with GPS TEC revealed that the WNN provides more accurate predictions than the IRI-2012 model and IGS products in the test area. (C) 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 83
页数:10
相关论文
共 15 条
[1]  
Amerian Y., 2010, J. Aerosp. Sci. Technol, V7, P19
[2]  
[Anonymous], 1999, MAPPING PREDICTING E
[3]   Calibration errors on experimental slant total electron content (TEC) determined with GPS [J].
Ciraolo, L. ;
Azpilicueta, F. ;
Brunini, C. ;
Meza, A. ;
Radicella, S. M. .
JOURNAL OF GEODESY, 2007, 81 (02) :111-120
[4]   Application of neural networks to South African GPS TEC modelling [J].
Habarulema, John Bosco ;
McKinnell, Lee-Anne ;
Cilliers, Pierre J. ;
Opperman, Ben D. L. .
ADVANCES IN SPACE RESEARCH, 2009, 43 (11) :1711-1720
[5]   The IGS VTEC maps: a reliable source of ionospheric information since 1998 [J].
Hernandez-Pajares, M. ;
Juan, J. M. ;
Sanz, J. ;
Orus, R. ;
Garcia-Rigo, A. ;
Feltens, J. ;
Komjathy, A. ;
Schaer, S. C. ;
Krankowski, A. .
JOURNAL OF GEODESY, 2009, 83 (3-4) :263-275
[6]   Numerical validations of neural-network-based ionospheric tomography for disturbed ionospheric conditions and sparse data [J].
Hirooka, S. ;
Hattori, K. ;
Takeda, T. .
RADIO SCIENCE, 2011, 46
[7]   Neural network based tomographic approach to detect earthquake-related ionospheric anomalies [J].
Hirooka, S. ;
Hattori, K. ;
Nishihashi, M. ;
Takeda, T. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (08) :2341-2353
[8]  
Moon Y., 2004, THESIS
[9]   Efficiency of artificial neural networks in map of total electron content over Iran [J].
Razin, Mir Reza Ghaffari ;
Voosoghi, Behzad ;
Mohammadzadeh, Ali .
ACTA GEODAETICA ET GEOPHYSICA, 2016, 51 (03) :541-555
[10]   Regional ionosphere modeling using spherical cap harmonics and empirical orthogonal functions over Iran [J].
Razin, Mir Reza Ghaffari ;
Voosoghi, Behzad .
ACTA GEODAETICA ET GEOPHYSICA, 2017, 52 (01) :19-33