Non-polynomial spline method for the time-fractional nonlinear Schrodinger equation

被引:21
|
作者
Li, Mingzhu [1 ,2 ]
Ding, Xiaohua [1 ]
Xu, Qiang [3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin, Heilongjiang, Peoples R China
[2] Qingdao Univ Qingdao, Sch Sci, Qingdao, Peoples R China
[3] Shandong Normal Univ, Sch Math & Stat, Jinan, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
Fractional Schrodinger equation; Non-polynomial spline; Stability; Fourier analysis; SPECTRAL COLLOCATION APPROXIMATION; SUB-DIFFUSION EQUATIONS; SYSTEM;
D O I
10.1186/s13662-018-1743-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a cubic non-polynomial spline method to solve the time-fractional nonlinear Schrodinger equation. The method is based on applying the L-1 formula to approximate the Caputo fractional derivative and employing the cubic non-polynomial spline functions to approximate the spatial derivative. By considering suitable relevant parameters, the scheme of order O(tau(2-alpha) + h(4)) has been obtained. The unconditional stability of the method is analyzed by the Fourier analysis. Numerical experiments are given to illustrate the effectiveness and accuracy of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条