Machine Learning-Enabled Renal Cell Carcinoma Status Prediction Using Multiplatform Urine-Based Metabolomics

被引:32
作者
Bifarin, Olatomiwa O. [1 ]
Gaul, David A. [2 ]
Sah, Samyukta [2 ]
Arnold, Rebecca S. [3 ]
Ogan, Kenneth [3 ]
Master, Viraj A. [3 ,4 ]
Roberts, David L. [5 ]
Bergquist, Sharon H. [5 ]
Petros, John A. [3 ,6 ]
Fernandez, Facundo M. [2 ,7 ]
Edison, Arthur S. [1 ,8 ]
机构
[1] Univ Georgia, Complex Carbohydrate Res Ctr, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Emory Univ, Dept Urol, Atlanta, GA 30308 USA
[4] Winship Canc Inst, Atlanta, GA 30302 USA
[5] Emory Univ, Sch Med, Dept Med, Atlanta, GA 30322 USA
[6] Atlanta VA Med Ctr, Atlanta, GA 30033 USA
[7] Georgia Inst Technol, Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[8] Univ Georgia, Inst Bioinformat, Dept Genet, Athens, GA 30602 USA
关键词
renal cell carcinoma; metabolomics; machine learning; liquid chromatography mass spectrometry; nuclear magnetic resonance spectroscopy; KIDNEY CANCER-DETECTION; SYSTEMS BIOLOGY; DRINKING-WATER; O-GLCNAC; BIOMARKER; IDENTIFICATION; DIAGNOSIS; TRANSFERASE; ASSOCIATION; INVASION;
D O I
10.1021/acs.jproteome.1c00213
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Renal cell carcinoma (RCC) is diagnosed through expensive cross-sectional imaging, frequently followed by renal mass biopsy, which is not only invasive but also prone to sampling errors. Hence, there is a critical need for a noninvasive diagnostic assay. RCC exhibits altered cellular metabolism combined with the close proximity of the tumor(s) to the urine in the kidney, suggesting that urine metabolomic profiling is an excellent choice for assay development. Here, we acquired liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) data followed by the use of machine learning (ML) to discover candidate metabolomic panels for RCC. The study cohort consisted of 105 RCC patients and 179 controls separated into two subcohorts: the model cohort and the test cohort. Univariate, wrapper, and embedded methods were used to select discriminatory features using the model cohort. Three ML techniques, each with different induction biases, were used for training and hyperparameter tuning. Assessment of RCC status prediction was evaluated using the test cohort with the selected biomarkers and the optimally tuned ML algorithms. A seven-metabolite panel predicted RCC in the test cohort with 88% accuracy, 94% sensitivity, 85% specificity, and 0.98 AUC. Metabolomics Workbench Study IDs are ST001705 and ST001706.
引用
收藏
页码:3629 / 3641
页数:13
相关论文
共 76 条
[1]   Tire tread wear particles in ambient air-a previously unknown source of human exposure to the biocide 2-mercaptobenzothiazole [J].
Avagyan, Rozanna ;
Sadiktsis, Ioannis ;
Bergvall, Christoffer ;
Westerholm, Roger .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (19) :11580-11586
[2]  
BENJAMINI YHY, 1995, J R STAT SOC B, V72, P12
[3]   Comprehensive Metabolite Identification Strategy Using Multiple Two-Dimensional NMR Spectra of a Complex Mixture Implemented in the COLMARm Web Server [J].
Bingol, Kerem ;
Li, Da-Wei ;
Zhang, Bo ;
Bruschweiler, Rafael .
ANALYTICAL CHEMISTRY, 2016, 88 (24) :12411-12418
[4]   Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations [J].
Boulesteix, Anne-Laure ;
Bender, Andreas ;
Bermejo, Justo Lorenzo ;
Strobl, Carolin .
BRIEFINGS IN BIOINFORMATICS, 2012, 13 (03) :292-304
[5]   Identification of extractable substances from rubber nettings used to package meat products [J].
Bouma, K ;
Schothorst, RC .
FOOD ADDITIVES AND CONTAMINANTS, 2003, 20 (03) :300-307
[6]   Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype [J].
Calvani, R. ;
Miccheli, A. ;
Capuani, G. ;
Miccheli, A. Tomassini ;
Puccetti, C. ;
Delfini, M. ;
Iaconelli, A. ;
Nanni, G. ;
Mingrone, G. .
INTERNATIONAL JOURNAL OF OBESITY, 2010, 34 (06) :1095-1098
[7]   A survey on feature selection methods [J].
Chandrashekar, Girish ;
Sahin, Ferat .
COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (01) :16-28
[8]   Imaging and Screening of Kidney Cancer [J].
de Leon, Alberto Diaz ;
Pedrosa, Ivan .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2017, 55 (06) :1235-+
[9]   Hexosamine Biosynthetic Pathway and Glycosylation Regulate Cell Migration in Melanoma Cells [J].
de Queiroz, Rafaela Muniz ;
Oliveira, Isadora Araujo ;
Piva, Bruno ;
Catao, Felipe Bouchuid ;
Rodrigues, Bruno da Costa ;
Pascoal, Adriana da Costa ;
Diaz, Bruno Lourenco ;
Todeschini, Adriane Regina ;
Caarls, Michelle Botelho ;
Dias, Wagner Barbosa .
FRONTIERS IN ONCOLOGY, 2019, 9
[10]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293