Robust Microbiota-Based Diagnostics for Inflammatory Bowel Disease

被引:21
作者
Eck, A. [1 ]
de Groot, E. F. J. [2 ]
de Meij, T. G. J. [3 ]
Welling, M. [4 ,5 ]
Savelkoul, P. H. M. [1 ,6 ]
Budding, A. E. [1 ]
机构
[1] Vrije Univ Amsterdam, Med Ctr, Dept Med Microbiol & Infect Control, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Med Ctr, Dept Gastroenterol & Hepatol, Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Med Ctr, Dept Pediat Gastroenterol, Amsterdam, Netherlands
[4] Univ Amsterdam, Informat Inst, Amsterdam, Netherlands
[5] Canadian Inst Adv Res, Toronto, ON, Canada
[6] Maastricht Univ, Med Ctr, Dept Med Microbiol, Maastricht, Netherlands
关键词
IS-pro; diagnostics; inflammatory bowel disease; microbiota; supervised classification; INTESTINAL MICROBIOTA; GUT MICROBIOTA; CLASSIFICATION; METAANALYSES;
D O I
10.1128/JCM.00162-17
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Strong evidence suggests that the gut microbiota is altered in inflammatory bowel disease (IBD), indicating its potential role in noninvasive diagnostics. However, no clinical applications are currently used for routine patient care. The main obstacle to implementing a gut microbiota test for IBD is the lack of standardization, which leads to high interlaboratory variation. We studied the between-hospital and between-platform batch effects and their effects on predictive accuracy for IBD. Fecal samples from 91 pediatric IBD patients and 58 healthy children were collected. IS-pro, a standardized technique designed for routine microbiota profiling in clinical settings, was used for microbiota composition characterization. Additionally, a large synthetic data set was used to simulate various perturbations and study their effects on the accuracy of different classifiers. Perturbations were validated in two replicate data sets, one processed in another laboratory and the other with a different analysis platform. The type of perturbation determined its effect on predictive accuracy. Real-life perturbations induced by between-platform variation were significantly greater than those caused by between-laboratory variation. Random forest was found to be robust to both simulated and observed perturbations, even when these perturbations had a dramatic effect on other classifiers. It achieved high accuracy both when cross-validated within the same data set and when using data sets analyzed in different laboratories. Robust clinical predictions based on the gut microbiota can be performed even when samples are processed in different hospitals. This study contributes to the effort to develop a universal IBD test that would enable simple diagnostics and disease activity monitoring.
引用
收藏
页码:1720 / 1732
页数:13
相关论文
共 35 条
  • [1] Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn's disease
    Andoh, Akira
    Kuzuoka, Hiroyuki
    Tsujikawa, Tomoyuki
    Nakamura, Shiro
    Hirai, Fumihito
    Suzuki, Yasuo
    Matsui, Toshiyuki
    Fujiyama, Yoshihide
    Matsumoto, Takayuki
    [J]. JOURNAL OF GASTROENTEROLOGY, 2012, 47 (12) : 1298 - 1307
  • [2] [Anonymous], 2017, GUT, DOI [DOI 10.1136/GUTJNL-2016-313235, 10.1136/gutjnl-2016-313235]
  • [3] IS-pro: high-throughput molecular fingerprinting of the intestinal microbiota
    Budding, A. E.
    Grasman, M. E.
    Lin, F.
    Bogaards, J. A.
    Soeltan-Kaersenhout, D. J.
    Vandenbroucke-Grauls, C. M. J. E.
    van Bodegraven, A. A.
    Savelkoul, P. H. M.
    [J]. FASEB JOURNAL, 2010, 24 (11) : 4556 - 4564
  • [4] Storage conditions of intestinal microbiota matter in metagenomic analysis
    Cardona, Silvia
    Eck, Anat
    Cassellas, Montserrat
    Gallart, Milagros
    Alastrue, Carmen
    Dore, Joel
    Azpiroz, Fernando
    Roca, Joaquim
    Guarner, Francisco
    Manichanh, Chaysavanh
    [J]. BMC MICROBIOLOGY, 2012, 12
  • [5] Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions
    Claesson, Marcus J.
    Wang, Qiong
    O'Sullivan, Orla
    Greene-Diniz, Rachel
    Cole, James R.
    Ross, R. Paul
    O'Toole, Paul W.
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 (22) : e200
  • [6] Inflammatory bowel disease: the role of environmental factors
    Danese, S
    Sans, M
    Fiocchi, C
    [J]. AUTOIMMUNITY REVIEWS, 2004, 3 (05) : 394 - 400
  • [7] Fecal microbiome analysis as a diagnostic test for diverticulitis
    Daniels, L.
    Budding, A. E.
    de Korte, N.
    Eck, A.
    Bogaards, J. A.
    Stockmann, H. B.
    Consten, E. C.
    Savelkoul, P. H.
    Boermeester, M. A.
    [J]. EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2014, 33 (11) : 1927 - 1936
  • [8] Composition and stability of intestinal microbiota of healthy children within a Dutch population
    de Meij, Tim G. J.
    Budding, Andries E.
    de Groot, Evelien F. J.
    Jansen, Fenna M.
    Kneepkens, C. M. Frank
    Benninga, Marc A.
    Penders, John
    van Bodegraven, Adriaan A.
    Savelkoul, Paul H. M.
    [J]. FASEB JOURNAL, 2016, 30 (04) : 1512 - 1522
  • [9] Population-level analysis of gut microbiome variation
    Falony, Gwen
    Joossens, Marie
    Vieira-Silva, Sara
    Wang, Jun
    Darzi, Youssef
    Faust, Karoline
    Kurilshikov, Alexander
    Bonder, Marc Jan
    Valles-Colomer, Mireia
    Vandeputte, Doris
    Tito, Raul Y.
    Chaffron, Samuel
    Rymenans, Leen
    Verspecht, Chlo
    De Sutter, Lise
    Lima-Mendez, Gipsi
    D'hoe, Kevin
    Jonckheere, Karl
    Homola, Daniel
    Garcia, Roberto
    Tigchelaar, Ettje F.
    Eeckhaudt, Linda
    Fu, Jingyuan
    Henckaerts, Liesbet
    Zhernakova, Alexandra
    Wijmenga, Cisca
    Raes, Jeroen
    [J]. SCIENCE, 2016, 352 (6285) : 560 - 564
  • [10] The effect of DNA extraction methodology on gut microbiota research applications
    Gerasimidis K.
    Bertz M.
    Quince C.
    Brunner K.
    Bruce A.
    Combet E.
    Calus S.
    Loman N.
    Ijaz U.Z.
    [J]. BMC Research Notes, 9 (1)