Complete sets of invariants for classical systems

被引:0
作者
Miller, W [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
来源
SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS | 2004年 / 37卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the general problem of determining exactly when a classical Hamiltonian H = Sigmag(ij)(x)p(i)p(j) + V(x) in n dimensions admits a constant of the motion that is polynomial in the momenta. If the associated Hamilton-Jacobi equation admits an orthogonal separation of variables., then it is possible to generate algorithmically a canonical basis Q, P where P-1 = H P-2,..., P-n are the other second-order constants of the motion associated with the separable coordinates, and {Q(i), Q(j)} = {P-i, P-j} = 0, {Q(i), P-j} = delta(ij). The 2n - 1 functions Q(2),..., Q(n), P-1,..., P-n form a basis for the invariants. We show how to determine for exactly which spaces and potentials the invariant Q(j) is a polynomial in the original momenta.
引用
收藏
页码:125 / 135
页数:11
相关论文
共 8 条
  • [1] [Anonymous], 1978, GRAD TEXTS MATH
  • [2] EISENHART LP, 1949, REIMANNIAN GEOMETRY
  • [3] SUPERINTEGRABILITY IN CLASSICAL MECHANICS
    EVANS, NW
    [J]. PHYSICAL REVIEW A, 1990, 41 (10): : 5666 - 5676
  • [4] ON HIGHER SYMMETRIES IN QUANTUM MECHANICS
    FRIS, J
    MANDROSOV, V
    SMORODINSKY, YA
    UHLIR, M
    WINTERNITZ, P
    [J]. PHYSICS LETTERS, 1965, 16 (03): : 354 - +
  • [5] DIRECT METHODS FOR THE SEARCH OF THE 2ND INVARIANT
    HIETARINTA, J
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (02): : 87 - 154
  • [6] Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions
    Kalnins, EG
    Miller, W
    Pogosyan, GS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) : 6439 - 6467
  • [7] Complete sets of invariants for dynamical systems that admit a separation of variables
    Kalnins, EG
    Kress, JM
    Miller, W
    Pogosyan, GS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) : 3592 - 3609
  • [8] Sethian J. A., 1999, CAMBRIDGE MONOGR APP, V3