Higher-order tensor renormalization group for relativistic fermion systems

被引:40
|
作者
Sakai, Ryo [1 ]
Takeda, Shinji [1 ]
Yoshimura, Yusuke [2 ]
机构
[1] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan
[2] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
来源
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS | 2017年 / 2017卷 / 06期
关键词
D O I
10.1093/ptep/ptx080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the higher-order tensor renormalization group to two-and three-dimensional relativistic fermion systems on the lattice. In order to perform a coarse-graining of tensor networks including Grassmann variables, we introduce the Grassmann higher-order tensor renormalization group. We test the validity of the new algorithm by comparing its results with those of exact or previous methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Calculation of higher-order moments by higher-order tensor renormalization group
    Morita, Satoshi
    Kawashima, Naoki
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 236 : 65 - 71
  • [2] Higher-Order Tensor Renormalization Group Approach to Lattice Glass Model
    Yoshiyama, Kota
    Hukushima, Koji
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (10)
  • [3] Improved local truncation schemes for the higher-order tensor renormalization group method
    Bloch, Jacques
    Lohmayer, Robert
    Meister, Maximilian
    Nunhofer, Michael
    NUCLEAR PHYSICS B, 2023, 987
  • [4] Calculation of fermionic Green functions with Grassmann higher-order tensor renormalization group
    Yoshimura, Yusuke
    Kuramashi, Yoshinobu
    Nakamura, Yoshifumi
    Takeda, Shinji
    Sakai, Ryo
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [5] Phase transition of four-dimensional Ising model with higher-order tensor renormalization group
    Akiyama, Shinichiro
    Kuramashi, Yoshinobu
    Yamashita, Takumi
    Yoshimura, Yusuke
    PHYSICAL REVIEW D, 2019, 100 (05)
  • [6] Sequences of trees and higher-order renormalization group equations
    Dugan, William T.
    Foissy, Loic
    Yeats, Karen
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [7] A parallel computing method for the higher order tensor renormalization group
    Yamashita, Takumi
    Sakurai, Tetsuya
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 278
  • [8] Calculation of critical exponents on fractal lattice Ising model by higher-order tensor renormalization group method
    Genzor, Jozef
    PHYSICAL REVIEW E, 2023, 107 (03)
  • [9] Higher-order Laplacian renormalization
    Nurisso, Marco
    Morandini, Marta
    Lucas, Maxime
    Vaccarino, Francesco
    Gili, Tommaso
    Petri, Giovanni
    NATURE PHYSICS, 2025, : 661 - 668
  • [10] The higher-order spectrum of simplicial complexes: a renormalization group approach
    Reitz, Marcus
    Bianconi, Ginestra
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (29)