Discrete surfaces segmentation into discrete planes

被引:0
作者
Sivignon, I
Dupont, F
Chassery, JM
机构
[1] Inst Natl Polytech Grenoble, Lab LIS, F-38402 St Martin Dheres, France
[2] Univ Lyon 1, Lab LIRIS, F-69622 Villeurbanne, France
来源
COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS | 2004年 / 3322卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is composed of two parts. In the first one, we present an analysis of existing discrete surface segmentation algorithms. We show that two classes of algorithms can actually be defined according to discrete surface and plane definitions. In the second part, we prove the link between the two classes presented. To do so, we propose a new labelling of the surface elements which leads to a segmentation algorithm of the first class that can be easily transformed into a segmentation algorithm of the second class.
引用
收藏
页码:458 / 473
页数:16
相关论文
共 26 条
  • [1] Discrete analytical hyperplanes
    Andres, E
    Acharya, R
    Sibata, C
    [J]. GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (05): : 302 - 309
  • [2] ANDRES E, 2002, LNCS, V2301, P313
  • [3] THE THEORY, DESIGN, IMPLEMENTATION AND EVALUATION OF A 3-DIMENSIONAL SURFACE DETECTION ALGORITHM
    ARTZY, E
    FRIEDER, G
    HERMAN, GT
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1981, 15 (01): : 1 - 24
  • [4] BERTRAND G, 1996, LECT NOTES COMPUTER, V1176, P325
  • [5] BRIMKOV V, 2004, CITRTR144
  • [6] BRIMKOV VE, 2004, CITRTR142
  • [7] Reversible discrete volume polyhedrization using Marching Cubes simplification
    Coeurjolly, D
    Guillaume, A
    Sivignion, I
    [J]. VISION GEOMETRY XII, 2004, 5300 : 1 - 11
  • [8] Debled-Rennesson I., 1995, THESIS U L PASTEUR S
  • [9] Topology of an arithmetic plane
    Francon, J
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 156 (1-2) : 159 - 176
  • [10] Françon J, 1999, LECT NOTES COMPUT SC, V1568, P425