Quantile Fuzzy Varying Coefficient Regression based on kernel function

被引:8
作者
Khammar, Amir Hamzeh [1 ]
Arefi, Mohsen [1 ]
Akbari, Mohammad Ghasem [1 ]
机构
[1] Univ Birjand, Fac Math Sci & Stat, Dept Stat, Birjand, Iran
关键词
Fuzzy data; Fuzzy varying coefficient regression; Goodness of fit; Kernel function; Robust regression; Quantile loss function; LINEAR-REGRESSION; LEAST-SQUARES; MODEL;
D O I
10.1016/j.asoc.2021.107313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fuzzy varying coefficient regression model is a generalized version of fuzzy linear regression model. This kind of model is flexible and adaptable than fuzzy linear regression model. In this paper, we introduce a fuzzy varying coefficient regression model based on the quantile loss function and under the kernel function. Based on the presented goodness of fit indices, we show that the proposed approach is robust under the outlier data. Some applications of this approach are studied on some data sets and a simulated data set. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 30 条
[1]  
[Anonymous], 1991, Adv. Model. Simul.
[2]  
[Anonymous], 1991, Fuzzy set theory and its applications
[3]   Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters [J].
Arefi, Mohsen .
SOFT COMPUTING, 2020, 24 (01) :311-320
[4]  
Chachi J, 2016, IRAN J FUZZY SYST, V13, P63
[5]   A Weighted Least Squares Fuzzy Regression for Crisp Input-Fuzzy Output Data [J].
Chachi, Jalal .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (04) :739-748
[6]  
CHANG PT, 1994, PROCEEDINGS OF THE THIRD IEEE CONFERENCE ON FUZZY SYSTEMS - IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, VOLS I-III, P1365, DOI 10.1109/FUZZY.1994.343613
[7]   A new approach to formulate fuzzy regression models [J].
Chen, Liang-Hsuan ;
Nien, Sheng-Hsing .
APPLIED SOFT COMPUTING, 2020, 86
[8]   A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy [J].
Chen, Shih-Pin ;
Dang, Jr-Fong .
INFORMATION SCIENCES, 2008, 178 (20) :3973-3988
[9]   Fuzzy regression using least absolute deviation estimators [J].
Choi, Seung Hoe ;
Buckley, James J. .
SOFT COMPUTING, 2008, 12 (03) :257-263
[10]   Least squares estimation of a linear regression model with LR fuzzy response [J].
Coppi, Renato ;
D'Urso, Pierpaolo ;
Giordani, Paolo ;
Santoro, Adriana .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (01) :267-286