Classical integrals as quantum mechanical differential operators: a comparison with the symmetries of the Schrodinger Equation

被引:1
作者
Nucci, M. C. [1 ]
Leach, P. G. L. [1 ]
机构
[1] Univ Perugia, Dept Matemat & Informat, I-06100 Perugia, Italy
来源
SYMMETRIES IN SCIENCE XVI | 2014年 / 538卷
关键词
D O I
10.1088/1742-6596/538/1/012017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superintegrable systems are characterised by the possession of many symmetries and integrals. We use the simple harmonic oscillator as an example and examine the relationship between the Noetherian integrals of a given Lagrangian as quantum operators and the Lie symmetries of the corresponding Schrodinger Equation.
引用
收藏
页数:7
相关论文
共 11 条
[1]  
Abramowitz M, 1965, HDB MATHEMATICAL FUN, P781
[2]   Some group theoretical aspects of nonlinear quantal oscillators [J].
Andriopoulos K. ;
Leach P.G.L. .
Journal of Nonlinear Mathematical Physics, 2005, 12 (Suppl 1) :32-42
[3]  
Dirac P. A. M., 1932, The Principles of Quantum Mechanics
[4]   3-DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR AND SU3 [J].
FRADKIN, DM .
AMERICAN JOURNAL OF PHYSICS, 1965, 33 (03) :207-&
[5]   The quantum Arnold transformation and the Ermakov-Pinney equation [J].
Guerrero, Julio ;
Lopez-Ruiz, Francisco F. .
PHYSICA SCRIPTA, 2013, 87 (03)
[6]  
GUNTHER NJ, 1977, J MATH PHYS, V18, P572, DOI 10.1063/1.523339
[7]   On the problem of degeneracy in quantum mechanics [J].
Jauch, JM ;
Hill, EL .
PHYSICAL REVIEW, 1940, 57 (07) :641-645
[8]  
LEMMER RL, 1999, ARAB J MATH SCI, V5, P1
[9]  
Lopez-Ruiz F F, 2014, GEN ERMAKOV SY UNPUB
[10]   Lagrangians galore [J].
Nucci, M. C. ;
Leach, P. G. L. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)