SnO2 Nanorods on ZnO Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning as Anode Material for High-Performance Lithium-Ion Batteries

被引:46
作者
Zhu, Jian [1 ]
Zhang, Guanhua [1 ]
Gu, Shaozhen [1 ]
Lu, Bingan [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
SnO2/ZnO; electrospinning; heterogeneous nanostructure; lithium-ion batteries; DOUBLE PROTECTION STRATEGY; CORE-SHELL; ELECTROCHEMICAL PERFORMANCE; SONOCHEMICAL SYNTHESIS; HOLLOW SPHERES; CARBON; STORAGE; FABRICATION; ELECTRODE; NANOPARTICLES;
D O I
10.1016/j.electacta.2014.10.149
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The ZnO/SnO2 heterogeneous nanofibers (HNFs) have been prepared via an electrospinning method followed by calcination at 500 degrees C in air. XRD, BET, SEM, TEM and electrochemical measurements were performed to characterize the new material, including structure, morphology and electrochemical properties. The spacing between adjacent SnO2 nanorods on mesoporous ZnO nanofibers is about twice the diameter of each SnO2 nanorod. The SnO2/ZnO11 (molar ratio of Sn: Zn = 1: 1) HNFs based electrodes exhibit excellent cycle performance and rate performance, which is attributed to the heterogeneous and mesoporous structure as well as the ultrafine ZnO NPs embedded in the HNFs matrix. Outstanding electrochemical performance as anode material for LIBs together with low cost, facile procedures and high reproducibility make the SnO2/ZnO HNFs have a prospect in the field of energy storage. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:308 / 313
页数:6
相关论文
共 46 条
[1]   Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries [J].
Abbas, Syed Mustansar ;
Hussain, Syed Tajammul ;
Ali, Saqib ;
Ahmad, Nisar ;
Ali, Nisar ;
Abbas, Saghir .
JOURNAL OF MATERIALS SCIENCE, 2013, 48 (16) :5429-5436
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes [J].
Bonino, Christopher A. ;
Ji, Liwen ;
Lin, Zhan ;
Toprakci, Ozan ;
Zhang, Xiangwu ;
Khan, Saad A. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) :2534-2542
[4]   Co3O4-C core-shell nanowire array as an advanced anode material for lithium ion batteries [J].
Chen, Jiao ;
Xia, Xin-hui ;
Tu, Jiang-ping ;
Xiong, Qin-qin ;
Yu, Ying-xia ;
Wang, Xiu-li ;
Gu, Chang-dong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) :15056-15061
[5]   Synthesis and characterization of heterostructured Mn3GaN0.5/GaN nanowires [J].
Ha, B ;
Kim, HC ;
Kang, SG ;
Kim, YH ;
Lee, JY ;
Park, CY ;
Lee, CJ .
CHEMISTRY OF MATERIALS, 2005, 17 (22) :5398-5403
[6]   A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries [J].
He, Min ;
Yuan, Lixia ;
Hu, Xianluo ;
Zhang, Wuxing ;
Shu, Jie ;
Huang, Yunhui .
NANOSCALE, 2013, 5 (08) :3298-3305
[7]   Fabrication of Solid Cylindrical-Shaped Microtowers of ZnO/C Core-Shell Hexagonal Nanorods by Thermolysis [J].
Hossain, M. M. ;
Mamun, A. H. A. ;
Hahn, J. R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (43) :23153-23159
[8]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193
[9]   Epitaxial core-shell and core-multishell nanowire heterostructures [J].
Lauhon, LJ ;
Gudiksen, MS ;
Wang, CL ;
Lieber, CM .
NATURE, 2002, 420 (6911) :57-61
[10]   Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes [J].
Lei, Cheng ;
Han, Fei ;
Li, Duo ;
Li, Wen-Cui ;
Sun, Qiang ;
Zhang, Xiang-Qian ;
Lu, An-Hui .
NANOSCALE, 2013, 5 (03) :1168-1175