On the derivative of a self-reciprocal polynomial

被引:0
|
作者
Jain, Vinay Kumar [1 ]
机构
[1] IIT, Math Dept, Kharagpur 721302, W Bengal, India
关键词
Self-reciprocal polynomial; derivative; unit circle; maximum; self-inversive polynomial; INEQUALITIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Similar to a polynomial P(z) with zeros w(1),w(2), . . .,w(n), being called a self-inversive polynomial (see [8]) if {w(1),w(2), . . .,w(n)} = {1/(w(1)) over bar, 1/(w(2)) over bar, . . ., 1/(w(n)) over bar}, we have called a polynomial p(z) with zeros z(1), z(2), . . ., z(n), a self-reciprocal polynomial if {z(1), z(2), . . ., z(n)} = {1/z(1), 1/z(2), . . ., 1/z(n)} and have obtained for a self-reciprocal polynomial p(z) of degree n (vertical bar z vertical bar=1)max vertical bar p'(z)vertical bar + vertical bar p'((z) over bar)vertical bar) = n (vertical bar z vertical bar=1)max vertical bar p(z)vertical bar, similar to (vertical bar z vertical bar=1)max vertical bar p'(z)vertical bar = n/2 (vertical bar z vertical bar=1)max vertical bar p(z)vertical bar, for a self-inversive polynomial P(z) of degree n ([8]).
引用
收藏
页码:193 / 196
页数:4
相关论文
共 50 条
  • [1] Algebraic Phase Unwrapping with Self-Reciprocal Polynomial Algebra
    Kitahara, Daichi
    Yamada, Isao
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 350 - 354
  • [2] ON SELF-RECIPROCAL FUNCTIONS
    JOSHI, DG
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1968, 38 : 193 - &
  • [3] SELF-RECIPROCAL FUNCTIONS
    DEBRANGES, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1964, 9 (03) : 433 - +
  • [4] On self-reciprocal polynomials
    Abdul Aziz
    B. A. Zargar
    Proceedings - Mathematical Sciences, 1997, 107 : 197 - 199
  • [5] SELF-RECIPROCAL FUNCTIONS
    ROVNYAK, VG
    DUKE MATHEMATICAL JOURNAL, 1966, 33 (02) : 363 - &
  • [6] On self-reciprocal polynomials
    Aziz, A
    Zargar, BA
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 197 - 199
  • [7] Generalizations of self-reciprocal polynomials
    Mattarei, Sandro
    Pizzato, Marco
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 271 - 288
  • [8] SELF-RECIPROCAL FOURIER FUNCTIONS
    COFFEY, MW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (09): : 2453 - 2455
  • [9] ON SOME COMBINATIONS OF SELF-RECIPROCAL POLYNOMIALS
    Kim, Seon-Hong
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (01): : 175 - 183
  • [10] Integral inequalities for self-reciprocal polynomials
    Horst Alzer
    Proceedings - Mathematical Sciences, 2010, 120 : 131 - 137