Abdominal Multi-organ Segmentation Using CNN and Transformer

被引:1
|
作者
Xin, Rui [1 ]
Wang, Lisheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Dept Automat, Shanghai, Peoples R China
关键词
Medical segmentation; Pseudo label; Semi-supervision learning;
D O I
10.1007/978-3-031-23911-3_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we combine the advantages of convolution local correlation and translation invariance in CNN with Transformer's ability to effectively capture long-term dependencies between pixels to produce high-quality pseudo labels. In order to segment images efficiently and quickly, we select nnU-Net [2] as the final segmentation network and use pseudo labels, unlabeled data and labeled data together to train the network, and then we use Generic U-Net [2], the backbone network of nnU-Net, as final prediction network. The mean DSC of the prediction results of our method on validation set of FLARE2022 Challenge [3] is 0.7580.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 50 条
  • [41] CVT-Vnet: a convolutional-transformer model for head and neck multi-organ segmentation
    Pan, Shaoyan
    Tian, Zhen
    Lei, Yang
    Wang, Tonghe
    Zhou, Jun
    McDonald, Mark
    Bradley, Jeffrey D.
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [42] WHOLE-BODY MULTI-ORGAN SEGMENTATION USING ANATOMICAL ATTENTION
    Liu, Chang
    Denzinger, Felix
    Folle, Lukas
    Qiu, Jingna
    Klein, Laura
    Maier, Joscha
    Kachelriess, Marc
    Lell, Micheal
    Maier, Andreas
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [43] Construction of Hierarchical Multi-Organ Statistical Atlases and Their Application to Multi-Organ Segmentation from CT Images
    Okada, Toshiyuki
    Yokota, Keita
    Hori, Masatoshi
    Nakamoto, Masahiko
    Nakamura, Hironobu
    Sato, Yoshinobu
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT I, PROCEEDINGS, 2008, 5241 : 502 - +
  • [44] Hierarchical Multi-Organ Segmentation Without Registration in 3D Abdominal CT Images
    Zografos, Vasileios
    Valentinitsch, Alexander
    Rempfler, Markus
    Tombari, Federico
    Menze, Bjoern
    Medical Computer Vision: Algorithms for Big Data, 2016, 9601 : 37 - 46
  • [45] Abdominal Multi-Organ Segmentation Based on Feature Pyramid Network and Spatial Recurrent Neural Network
    Song, Yuhan
    Elibol, Armagan
    Chong, Nak Young
    IFAC PAPERSONLINE, 2023, 56 (02): : 3001 - 3008
  • [46] Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT
    Linguraru, Marius George
    Pura, John A.
    Pamulapati, Vivek
    Summers, Ronald M.
    MEDICAL IMAGE ANALYSIS, 2012, 16 (04) : 904 - 914
  • [47] Multi-organ automatic segmentation in 4D contrast-enhanced abdominal CT
    Linguraru, Marius George
    Summers, Ronald M.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 45 - +
  • [48] SEF-UNet: advancing abdominal multi-organ segmentation with SEFormer and depthwise cascaded upsampling
    Zhao, Yaping
    Jiang, Yizhang
    Huang, Lijun
    Xia, Kaijian
    PeerJ Computer Science, 2024, 10
  • [49] SEF-UNet: advancing abdominal multi-organ segmentation with SEFormer and depthwise cascaded upsampling
    Zhao, Yaping
    Jiang, Yizhang
    Huang, Lijun
    Xia, Kaijian
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [50] Multi-organ Segmentation from Abdominal CT with Random Forest based Statistical Shape Model
    Wu, Jiaqi
    Li, Guangxu
    Lu, Huimin
    Kim, Hyoungseop
    PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON BIOMEDICAL SIGNAL AND IMAGE PROCESSING (ICBIP 2019), 2019, : 67 - 70