Abdominal Multi-organ Segmentation Using CNN and Transformer

被引:1
|
作者
Xin, Rui [1 ]
Wang, Lisheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Dept Automat, Shanghai, Peoples R China
关键词
Medical segmentation; Pseudo label; Semi-supervision learning;
D O I
10.1007/978-3-031-23911-3_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we combine the advantages of convolution local correlation and translation invariance in CNN with Transformer's ability to effectively capture long-term dependencies between pixels to produce high-quality pseudo labels. In order to segment images efficiently and quickly, we select nnU-Net [2] as the final segmentation network and use pseudo labels, unlabeled data and labeled data together to train the network, and then we use Generic U-Net [2], the backbone network of nnU-Net, as final prediction network. The mean DSC of the prediction results of our method on validation set of FLARE2022 Challenge [3] is 0.7580.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 50 条
  • [1] Dual encoder network with transformer-CNN for multi-organ segmentation
    Zhifang Hong
    Mingzhi Chen
    Weijie Hu
    Shiyu Yan
    Aiping Qu
    Lingna Chen
    Junxi Chen
    Medical & Biological Engineering & Computing, 2023, 61 : 661 - 671
  • [2] Dual encoder network with transformer-CNN for multi-organ segmentation
    Hong, Zhifang
    Chen, Mingzhi
    Hu, Weijie
    Yan, Shiyu
    Qu, Aiping
    Chen, Lingna
    Chen, Junxi
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (03) : 661 - 671
  • [3] An Overview of Abdominal Multi-organ Segmentation
    Li, Qiang
    Song, Hong
    Chen, Lei
    Meng, Xianqi
    Yang, Jian
    Zhang, Le
    CURRENT BIOINFORMATICS, 2020, 15 (08) : 866 - 877
  • [4] Multi-Organ Segmentation in Abdominal CT Images
    Okada, Toshiyuki
    Linguraru, Marius George
    Hori, Masatoshi
    Suzuki, Yuki
    Summers, Ronald M.
    Tomiyama, Noriyuki
    Sato, Yoshinobu
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 3986 - 3989
  • [5] Continual Learning for Abdominal Multi-organ and Tumor Segmentation
    Zhang, Yixiao
    Li, Xinyi
    Chen, Huimiao
    Yuille, Alan L.
    Liu, Yaoyao
    Zhou, Zongwei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II, 2023, 14221 : 35 - 45
  • [6] Discriminative dictionary learning for abdominal multi-organ segmentation
    Tong, Tong
    Wolz, Robin
    Wang, Zehan
    Gao, Qinquan
    Misawa, Kazunari
    Fujiwara, Michitaka
    Mori, Kensaku
    Hajnal, Joseph V.
    Rueckert, Daniel
    MEDICAL IMAGE ANALYSIS, 2015, 23 (01) : 92 - 104
  • [7] Male Pelvic Multi-organ Segmentation Using V-transformer Network
    Pan, Shaoyan
    Lei, Yang
    Wang, Tonghe
    Wynne, Jacob
    Roper, Justin
    Jani, Ashesh B.
    Patel, Pretesh
    Bradley, Jeffrey D.
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [8] Multi-organ segmentation in three dimensional abdominal CT images
    Shimizu, A.
    Ohno, R.
    Ikegami, T.
    Kobatake, H.
    Nawano, S.
    Smutek, D.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2006, 1 : 76 - 78
  • [9] Male pelvic multi-organ segmentation using token-based transformer Vnet
    Pan, Shaoyan
    Lei, Yang
    Wang, Tonghe
    Wynne, Jacob
    Chang, Chih-Wei
    Roper, Justin
    Jani, Ashesh B.
    Patel, Pretesh
    Bradley, Jeffrey D.
    Liu, Tian
    Yang, Xiaofeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (20):
  • [10] Multi-Organ Segmentation with Missing Organs in Abdominal CT Images
    Suzuki, Miyuki
    Linguraru, Marius George
    Okada, Kazunori
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT III, 2012, 7512 : 418 - 425