Dirac Cones in two-dimensional conjugated polymer networks

被引:67
|
作者
Adjizian, Jean-Joseph [1 ]
Briddon, Patrick [1 ]
Humbert, Bernard [1 ]
Duvail, Jean-Luc [1 ]
Wagner, Philipp [1 ]
Adda, Coline [1 ]
Ewels, Christopher [1 ]
机构
[1] Univ Nantes, CNRS, UMR6502, IMN, 2 Rue Houssiniere,BP32229, F-44322 Nantes, France
关键词
COVALENT ORGANIC FRAMEWORKS; TRIAZINE-BASED FRAMEWORKS; TOTAL-ENERGY CALCULATIONS; GRAPHENE; CARBON; CONSTRUCTION; CRYSTALLINE; STABILITY; DYNAMICS; FERMIONS;
D O I
10.1038/ncomms6842
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A two-dimensional porous conjugated porphyrin polymer for uniform lithium deposition
    Li, Chunhua
    Gu, Yu
    Wang, Yingbin
    Sun, Bing
    Shang, Hong
    DALTON TRANSACTIONS, 2021, 50 (43) : 15849 - 15854
  • [42] A two-dimensional Dirac fermion microscope
    Peter Bøggild
    José M. Caridad
    Christoph Stampfer
    Gaetano Calogero
    Nick Rübner Papior
    Mads Brandbyge
    Nature Communications, 8
  • [43] On Perturbed Two-Dimensional Dirac Operators
    Suo Zhao
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1249 - 1263
  • [44] A two-dimensional Dirac fermion microscope
    Boggild, Peter
    Caridad, Jose M.
    Stampfer, Christoph
    Calogero, Gaetano
    Papior, Nick Rubner
    Brandbyge, Mads
    NATURE COMMUNICATIONS, 2017, 8 : 15783
  • [45] On Perturbed Two-Dimensional Dirac Operators
    Zhao, Suo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1249 - 1263
  • [46] Two-dimensional Dirac signature of germanene
    Zhang, L.
    Bampoulis, P.
    van Houselt, A.
    Zandvliet, H. J. W.
    APPLIED PHYSICS LETTERS, 2015, 107 (11)
  • [47] Dirac phonons in two-dimensional materials
    Gong, Jialin
    Wang, Jianhua
    Yuan, Hongkuan
    Zhang, Zeying
    Wang, Wenhong
    Wang, Xiaotian
    PHYSICAL REVIEW B, 2022, 106 (21)
  • [48] Coexistence of one-dimensional and two-dimensional topology and genesis of Dirac cones in the chiral Aubry-André model
    Antao, T. V. C.
    Miranda, D. A.
    Peres, N. M. R.
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [49] Two-dimensional transitional metal dihydride crystals with anisotropic and spin-polarized Fermi Dirac cones
    Lv, Haifeng
    Wu, Daoxiong
    Li, Xiuling
    Wu, Xiaojun
    Yang, Jinlong
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (42) : 11243 - 11247
  • [50] Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry
    Kalesaki, E.
    Delerue, C.
    Smith, C. Morais
    Beugeling, W.
    Allan, G.
    Vanmaekelbergh, D.
    PHYSICAL REVIEW X, 2014, 4 (01):