Dirac Cones in two-dimensional conjugated polymer networks

被引:67
作者
Adjizian, Jean-Joseph [1 ]
Briddon, Patrick [1 ]
Humbert, Bernard [1 ]
Duvail, Jean-Luc [1 ]
Wagner, Philipp [1 ]
Adda, Coline [1 ]
Ewels, Christopher [1 ]
机构
[1] Univ Nantes, CNRS, UMR6502, IMN, 2 Rue Houssiniere,BP32229, F-44322 Nantes, France
关键词
COVALENT ORGANIC FRAMEWORKS; TRIAZINE-BASED FRAMEWORKS; TOTAL-ENERGY CALCULATIONS; GRAPHENE; CARBON; CONSTRUCTION; CRYSTALLINE; STABILITY; DYNAMICS; FERMIONS;
D O I
10.1038/ncomms6842
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The rare two-dimensional materials with Dirac cones
    Wang, Jinying
    Deng, Shibin
    Liu, Zhongfan
    Liu, Zhirong
    NATIONAL SCIENCE REVIEW, 2015, 2 (01) : 22 - 39
  • [2] Dirac Cones in Two-Dimensional Lattices: Janugraphene and Chlorographene
    Ma, Yandong
    Dai, Ying
    Huang, Baibiao
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (15): : 2471 - 2476
  • [3] The electronic and transport properties of two-dimensional conjugated polymer networks including disorder
    Adjizian, Jean-Joseph
    Lherbier, Aurelien
    Dubois, Simon M. -M.
    Botello-Mendez, Andres Rafael
    Charlier, Jean-Christophe
    NANOSCALE, 2016, 8 (03) : 1642 - 1651
  • [4] The rare two-dimensional materials with Dirac cones
    Jinying Wang
    Shibin Deng
    Zhongfan Liu
    Zhirong Liu
    NationalScienceReview, 2015, 2 (01) : 22 - 39
  • [5] Dirac cones in two-dimensional systems: from hexagonal to square lattices
    Liu, Zhirong
    Wang, Jinying
    Li, Jianlong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (43) : 18855 - 18862
  • [6] Dirac cones in two-dimensional artificial crystals for classical waves
    Lu, Jiuyang
    Qiu, Chunyin
    Xu, Shengjun
    Ye, Yangtao
    Ke, Manzhu
    Liu, Zhengyou
    PHYSICAL REVIEW B, 2014, 89 (13)
  • [7] Two-dimensional materials with Dirac cones: Graphynes containing heteroatoms
    Malko, Daniel
    Neiss, Christian
    Goerling, Andreas
    PHYSICAL REVIEW B, 2012, 86 (04)
  • [8] Chiral excitonic instability of two-dimensional tilted Dirac cones
    Ohki, Daigo
    Hirata, Michihiro
    Tani, Takehiro
    Kanoda, Kazushi
    Kobayashi, Akito
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [9] Anisotropic carrier mobility in two-dimensional materials with tilted Dirac cones: theory and application
    Cheng, Ting
    Lang, Haifeng
    Li, Zhenzhu
    Liu, Zhongfan
    Liu, Zhirong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (35) : 23942 - 23950
  • [10] Twelve inequivalent Dirac cones in two-dimensional ZrB2
    Lopez-Bezanilla, Alejandro
    PHYSICAL REVIEW MATERIALS, 2018, 2 (01):