Dirac Cones in two-dimensional conjugated polymer networks

被引:67
|
作者
Adjizian, Jean-Joseph [1 ]
Briddon, Patrick [1 ]
Humbert, Bernard [1 ]
Duvail, Jean-Luc [1 ]
Wagner, Philipp [1 ]
Adda, Coline [1 ]
Ewels, Christopher [1 ]
机构
[1] Univ Nantes, CNRS, UMR6502, IMN, 2 Rue Houssiniere,BP32229, F-44322 Nantes, France
关键词
COVALENT ORGANIC FRAMEWORKS; TRIAZINE-BASED FRAMEWORKS; TOTAL-ENERGY CALCULATIONS; GRAPHENE; CARBON; CONSTRUCTION; CRYSTALLINE; STABILITY; DYNAMICS; FERMIONS;
D O I
10.1038/ncomms6842
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dirac Cones in two-dimensional conjugated polymer networks
    Jean-Joseph Adjizian
    Patrick Briddon
    Bernard Humbert
    Jean-Luc Duvail
    Philipp Wagner
    Coline Adda
    Christopher Ewels
    Nature Communications, 5
  • [2] Dirac cones in two-dimensional borane
    Martinez-Canales, Miguel
    Galeev, Timur R.
    Boldyrev, Alexander I.
    Pickard, Chris J.
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [3] The rare two-dimensional materials with Dirac cones
    Jinying Wang
    Shibin Deng
    Zhongfan Liu
    Zhirong Liu
    NationalScienceReview, 2015, 2 (01) : 22 - 39
  • [4] The rare two-dimensional materials with Dirac cones
    Wang, Jinying
    Deng, Shibin
    Liu, Zhongfan
    Liu, Zhirong
    NATIONAL SCIENCE REVIEW, 2015, 2 (01) : 22 - 39
  • [5] Dirac cones in two-dimensional acoustic metamaterials
    Dai, Hongqing
    Xia, Baizhan
    Yu, Dejie
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (06)
  • [6] Dirac Cones in Two-Dimensional Lattices: Janugraphene and Chlorographene
    Ma, Yandong
    Dai, Ying
    Huang, Baibiao
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (15): : 2471 - 2476
  • [7] Double Dirac cones in two-dimensional dielectric photonic crystals
    Li, Yan
    Mei, Jun
    OPTICS EXPRESS, 2015, 23 (09): : 12089 - 12099
  • [8] Dirac cones in two-dimensional artificial crystals for classical waves
    Lu, Jiuyang
    Qiu, Chunyin
    Xu, Shengjun
    Ye, Yangtao
    Ke, Manzhu
    Liu, Zhengyou
    PHYSICAL REVIEW B, 2014, 89 (13)
  • [9] Two-dimensional materials with Dirac cones: Graphynes containing heteroatoms
    Malko, Daniel
    Neiss, Christian
    Goerling, Andreas
    PHYSICAL REVIEW B, 2012, 86 (04)
  • [10] Optical absorption in two-dimensional materials with tilted Dirac cones
    Wild, Andrew
    Mariani, Eros
    Portnoi, Mikhail E.
    PHYSICAL REVIEW B, 2022, 105 (20)