mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability

被引:917
作者
Schoenmaker, Linde [1 ]
Witzigmann, Dominik [2 ,3 ]
Kulkarni, Jayesh A. [2 ,3 ]
Verbeke, Rein [4 ]
Kersten, Gideon [1 ,5 ]
Jiskoot, Wim [1 ,5 ]
Crommelin, Daan J. A. [6 ]
机构
[1] Leiden Univ, Leiden Acad Ctr Drug Res, Div BioTherapeut, NL-2300 RA Leiden, Netherlands
[2] Univ British Columbia, Dept Biochem & Mol Biol, 2350 Hlth Sci Mall, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, NanoMed Innovat Network NMIN, Vancouver, BC, Canada
[4] Univ Ghent, Fac Pharm, Ghent Res Grp Nanomed, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
[5] Coriolis Pharma, Fraunhoferstr 18b, D-82152 Martinsried, Germany
[6] Univ Utrecht, Fac Sci, Utrecht Inst Pharmaceut Sci UIPS, Dept Pharmaceut, Utrecht, Netherlands
关键词
COVID-19; Lipid nanoparticle (LNP); Lyophilization; mRNA; Shelf life; Storage stability; Structure; Vaccine; LONG-TERM STORAGE; PHOSPHODIESTER BONDS; SIRNA; FORMULATIONS; DEGRADATION; INFLUENZA; PATHWAYS; DELIVERY; ERA; DNA;
D O I
10.1016/j.ijpharm.2021.120586
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unclear how water in the LNP core interacts with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored.
引用
收藏
页数:13
相关论文
共 97 条
[1]   Freeze-drying of nanoparticles: Formulation, process and storage considerations [J].
Abdelwahed, Wassim ;
Degobert, Ghania ;
Stainmesse, Serge ;
Fessi, Hatem .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (15) :1688-1713
[2]   Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles [J].
Arteta, Marianna Yanez ;
Kjellman, Tomas ;
Bartesaghi, Stefano ;
Wallin, Simonetta ;
Wu, Xiaoqiu ;
Kvist, Alexander J. ;
Dabkowska, Aleksandra ;
Szekely, Noemi ;
Radulescu, Aurel ;
Bergenholtz, Johan ;
Lindfors, Lennart .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (15) :E3351-E3360
[3]   Formulation of Biocompatible Targeted ECO/siRNA Nanoparticles with Long-Term Stability for Clinical Translation of RNAi [J].
Ayat, Nadia R. ;
Sun, Zhanhu ;
Sun, Da ;
Yin, Michelle ;
Hall, Ryan C. ;
Vaidya, Amita M. ;
Liu, Xujie ;
Schilb, Andrew L. ;
Scheidt, Josef H. ;
Lu, Zheng-Rong .
NUCLEIC ACID THERAPEUTICS, 2019, 29 (04) :195-207
[4]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[5]   Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization [J].
Ball, Rebecca L. ;
Bajaj, Palak ;
Whitehead, Kathryn A. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 :305-315
[6]   Self-amplifying RNA vaccines for infectious diseases [J].
Bloom, Kristie ;
van den Berg, Fiona ;
Arbuthnot, Patrick .
GENE THERAPY, 2021, 28 (3-4) :117-129
[7]   Encapsulation state of messenger RNA inside lipid nanoparticles [J].
Brader, Mark L. ;
Williams, Sean J. ;
Banks, Jessica M. ;
Hui, Wong H. ;
Zhou, Z. Hong ;
Jin, Lin .
BIOPHYSICAL JOURNAL, 2021, 120 (14) :2766-2770
[8]   Quantification of RNA integrity and its use for measurement of transcript number [J].
Brisco, Michael J. ;
Morley, Alexander A. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (18) :e144
[9]  
Burke P.A., 2013, US, Patent No. 2013/0037977
[10]   Nanomaterial Delivery Systems for mRNA Vaccines [J].
Buschmann, Michael D. ;
Carrasco, Manuel J. ;
Alishetty, Suman ;
Paige, Mikell ;
Alameh, Mohamad Gabriel ;
Weissman, Drew .
VACCINES, 2021, 9 (01) :1-30